When Arguing is Good Thing:
The Case of Fractions
Juli i. Dixon
University of Central Florida
julidixon@ucf.edu

\qquad

Analyze this...

$$
15 / 6 \div 1 / 3
$$

\qquad
\qquad
\qquad
a)6/33
b) $11 / 18$
c) $51 / 6$
d) $51 / 2$
\qquad

Use errors as springboards to learning

\qquad
When students are taught through the \qquad Standards for Mathematical Practice of the Common Core there is a \qquad fundamental shift in what students know and can do - even their errors \qquad are affected. We must be prepared.

Goals for this session

- Experience cognitive dissonance using appropriate tasks and plan for their use in classroom instruction.
- Unpack norms supportive of creating environments for rich class discussions.
- Make connections to Mathematical Practices.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What classroom norms promote "arguing?"

\qquad

- Provide explanations and justifications with all answers.
- Make sense of each other's solutions.
- Say when you don't understand or don't agree.
\qquad
\qquad
\qquad
\qquad
\qquad

Consider this.

How might grade 6 students taught
\qquad according to the Common Core solve a problem like this?
$21 / 2 \div 1 / 4$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Developing Fraction Operations

- Grade 5
- Add/subtract fractions with unlike denominators with and without context using visual models or equations
-Solve word problems involving division of whole numbers leading to answers in the form of fractions.
- Multiply whole numbers or fractions by fractions with and without context using visual models or equations.
- Multiply fractional side lengths of rectangular regions to find the area.

Developing Fraction
 Operations (continued)

- Grade 5
- Interpret division of a unit fraction by a non-zero whole number or division of a whole number by a unit fraction and create contexts and use visual models or equations to solve.
- Grade 6
- Divide fractions by fractions with and without context and use visual models or equations to solve.

[^0]
With which practice were we engaged?

The 8 Standards for Mathematical Practice: \qquad
1 Make sense of problems and persevere in solving them
2 Reason abstractly and quantitatively
3 Construct viable arguments and critique the reasoning of others
4 Model with mathematics
5 Use appropriate tools strategically
6 Attend to precision
7 Look for and make use of structure
8 Look for and express regularity in repeated reasoning
© Juli K. Dixon \qquad

\qquad
\qquad

```
With which practices were
we engaged?
    The 8 Standards for Mathematical Practice:
    1 Make sense of problems and persevere in solving them
2 Reason abstractly and quantitatively
3 Construct viable arguments and critique the reasoning
of others
4 Model with mathematics
5 Use appropriate tools strategically
6 Attend to precision
7 Look for and make use of structure
8 Look for and express regularity in repeated reasoning
© Juli K. Dixon we engaged?
The 8 Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them
2 Reason abstractly and quantitatively
3 Construct viable arguments and critique the reasoning of others
Model with mathematics
5 Use appropriate tools strategically
7 Look for and make use of structure
8 Look for and express regularity in repeated reasoning
© Juli K. Dixon
``` \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Students are expected to
create contexts for operations
with fractions. What does this
look like and how might it
involve "arguing?"
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Create a story problem}
\(\qquad\) for the following:

Create a story context for 4/5-1/2.
\(\qquad\)

Begin like this:
"Ed has 4/5 of a pizza leftover...."```

[^0]: Write an equation to
 represent each problem then use a visual model to solve it.

 1. There is $2 / 3$ of a pizza left over. Jessica ate $3 / 4$ of the leftover pizza. How much of a whole pizza did Jessica eat?
 2. Alex brought $3 / 4$ of a pan of brownies to school. Her friends ate $2 / 3$ of what she brought. How much of the pan of brownies did her friends eat?
 3. The park measured $2 / 3$ of a mile by $3 / 4$ of a mile, what fraction of a square mile is the park?
