STATISTICAL REASONING:
 Convincing Evidence Versus Proof

Roxy Peck
Cal Poly, San Luis Obispo

Activities That Helps Students Understand What Conclusions Make Sense

- Mystery Bags
- Cookie Game
- (If time) Confidence Intervals-Can You Hear Me Now?

Convincing Evidence Versus Proof

- Key distinction in statistical inference
- Makes drawing conclusions in inferential settings tricky.
- Understanding what conclusions are reasonable and wording conclusions correctly is conceptually difficult for many students.

MYSTERY BAG 1

- Mix of milk chocolate and dark chocolate candies
- Sample 10 candies from the bag
- What do we now know about the population of candies in the bag?

P = PROPORTION OF DARK CHOCOLATE CANDIES

Statement: $\mathrm{p}=0$
convincing evidence or proof?
Statement: $\mathrm{p}=0$ convincing evidence or proof?
Statement: $\mathrm{p}=1$ convincing evidence or proof?
Statement: $\mathrm{p}=1$ convincing evidence or proof?
Statement: $\mathrm{p} \neq 0.5$ convincing evidence or proof or ???
Statement: $\mathrm{p}=0.5$ convincing evidence or proof or ??????

Mystery Bag 2

-. Have we proven $p=0.5 ?$

- No
- Have we proven $p \neq 0.5$?
- No
- Are we convinced that $p \neq 0.5$?
- Yes
- Difference between convincing evidence and proof

Understanding Convincing Evidence-The Logic of Hypothesis Testing

- The Cookie Game

A HIERARCHY

- Proof
- Convincing evidence (that a claim is false)
- No convincing evidence that a claim is false.
- The conclusion that is NOT possible based on a sample (except in really rare cases of claims about proportions being 0 or 1): Convincing evidence that a claim is true.

Discussion Points

- Cookie Game illustrate all elements of a statistical hypothesis test
- Competing claims about a population, one of which is initially assumed to be true (the null hypothesis)
- Observation
- Assessment of how likely observed outcome would be if the null hypothesis is true
- A decision based on whether the observed outcome would have been likely or unlikely to occur when the null hypothesis is true

IMPORTANT THAT STUDENTS UNDERSTAND...

Possible conclusions in a hypothesis test are

1. Convincing evidence against the null hypothesis
2. No convincing evidence against the null hypothesis

AND

No convincing evidence against the null hypothesis IS NOT THE SAME AS
Convincing evidence that the null hypothesis is true

And While We Are on the Subject of DIFFICULT INTERPRETATIONS

- Interpreting confidence level...
- "Can you hear me now?" activity.

Normal Population with mean μ

- 10 random samples of size 25 . Pick a sample and calculate a 90% confidence interval for μ.

Sample	Sample mean	Sample standard deviation
1	101.67	9.58
2	98.51	9.40
3	96.45	8.59
4	100.14	6.53
5	98.20	11.52
6	102.87	9.39
7	100.83	8.86
8	100.07	9.67
9	102.13	9.01
10	102.31	11.06

MEANING OF 90\% Confidence

- Common student error (maybe even more common than a correct answer!): The probability that the population mean is in my interval is 0.9.
- Ask students what a probability of 0.9 means. The get to the 90% of the time, in the long run, ...
- Then play the "Can you hear me now?" game.
- Actual population mean is 100 . Is it in your interval. How about now? How about now? How about now?
- This interpretation of confidence level doesn't make sense because NOTHING is random here!

THANKS!

- Thanks for attending this session.
- Copies of Powerpoint slides are on the NCTM conference web site, or you can email me for a copy.
- Questions and Comments?
- rpeck@calpoly.edu

