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What do mathematicians do? 
 

• Solve problems/calculate solutions 
 
• Develop models that describe real world situations 

 
• Offer definitions 

 
• Propose conjectures 

 
• Prove/disprove conjectures 



Proving (and Disproving) 
• Which area of math does the study of proofs (proof theory) 

belong to? 
 

• Logic! 
 

• Question: How many of you majored in math or math 
education, or in education with a concentration in math? 
 

• Question: How many of you took a course in logic? 



The Problem 
 

• We don’t explicitly teach proof techniques in math classes 
very much… 
 
 

• …even though it’s arguably the most important mathematical 
skill, and certainly the one used most by working (pure) 
mathematicians 



The Goal 
• The goal of this session is to teach general strategies for 

writing proofs (and for constructing counterexamples) 
 

• These strategies are not specific to any area of math 
 

• Basically, we’ll provide a taxonomy of the main strategies 
available 



What is a Mathematical Proof? 
 
 

• It’s an argument 
 
 

• Specifically, it’s a deductive argument 



Arguments 
• An argument is a collection of premises and a conclusion 

• Arguments can be inductive or deductive 

• Inductive arguments can be strong or weak (and cogent or incogent) 

• Examples include enumerative generalization (but not mathematical 
induction!) 

• Deductive arguments can be valid or invalid (and sound or unsound) 

• The classic example is a mathematical proof 

• Deductive arguments are monotonic 

 



Mathematical Proofs 
 

• The premises are a set of statements, which could include: 
• Definitions 
• Axioms 
• Conditions specified by the problem/situation 
• Previously derived results/theorems/lemmas 

 
• The conclusion is obviously the conjecture being proven 



The Form of a Proof 
• A proof can be formal or informal 

 
• An informal proof is sometimes called a proof cartoon or 

proof sketch 
 

• A formal proof can use a range of conventions, but typically 
revolves around numbered lines, specification of previous 
lines, and rules of inference; it might also include sub-
derivations (sub-proofs) and conventions for indicating when 
these are closed 



Proof Strategies 
• Direct proofs 

• Direct derivation 
• By cases 
• Enumerative 

• Conditional proofs 
• Indirect proofs (aka reductio ad absurdum or proof by 

contradiction) 
• Existential proofs (constructive) 
• Universal proofs 

• Universal derivation 
• Mathematical induction 
• Strong induction 

 



Direct Proofs 
 

• Direct derivations are the simplest proofs 
 
 

• The method is to simply start with premises and apply rules of 
inferences until the conclusion is derived 



Example: Direct Derivation 
Prove that the sum of any two even integers is also an even integer 
 
Let m, n be the even integers 
 
 
 
 
 
 
 
 
 
 
 
Q.E.D. 

1.  Show m + n is even 

2.  m = 2k, where k is an integer By definition of even integer 

3.  n = 2j, where j is an integer By definition of even integer 

4.  m + n = 2k + 2j By substitution 

5.  m + n = 2(k + j) By distributive property 

6.  m + n = 2(an integer) Sum of any 2 integers is an integer 

7.  m + n is an even integer By definition of even integer 



Example: Proof by Cases 
 

• Prove that n2 + n is even, for any integer n 
 
 

• Either n is even or n is odd 
 
 

• We can consider the 2 cases separately 



The Even Case 
Case 1: n is even 

1.  Show n2 + n is even 

2.  n = 2k Definition of even integer 

3.  n(n + 1) = 2k(n + 1) Multiply both sides by n + 1 

4.  n2 + n = 2k(n + 1) Algebra 

5.  n2 + n is even Definition of even integer 



The Odd Case 
Case 2: n is odd 

1.  Show n2 + n is even 

2.  n = 2k + 1 Definition of odd integer 

3.  n + 1 = 2k + 2 Add 1 to each side 

4.  n + 1 = 2(k + 1) Algebra 

5.  n(n + 1) = n ⋅ 2(k + 1) Multiply both sides by n 

6.  n2 + n = 2n(k + 1) Algebra 

7.  n2 + n is even Definition of even integer 



Example: Proof by Cases 
 

• We now know that: 
 
 If n is even, n2 + 1 is even 
 If n is odd, n2 + 1 is even 
 n must either be even or odd 

 
• So n2 + 1 is even for every integer n 



Example: Enumerative Proof 
 

• An enumerative proof is similar to proof by cases, except that 
we enumerate every specific possibility (rather than general 
categories) in order to show what must be the case 
 

• Example (the Monty Hall problem): show that the probability 
of winning the prize is 2/3 if you switch doors after the game 
show host shows you the prize is not behind one of the other 
doors 



The Monty Hall Problem 
• You choose door #1 and decide to switch 
• There are 3 equally likely possibilities: 

1. The prize is behind door #1. Doors #2 and #3 contain Zonks. 
You switch, Zonk! 

2. The prize is behind door #2. The host reveals door #3. You 
switch. Prize! 

3. The prize is behind door #3. The host reveals door #2. You 
switch. Prize! 

• It works exactly the same way if you initially choose door #2 or 
door #3 and then switch. 

• So you win 2/3 of the time if you switch. 



Conditional Proofs 
• To prove a claim of the form (if P then Q), assume P and then 

show Q must follow 
• P is called the hypothesis (there may be more than one 

hypothesis) 
• Q, obviously, is the conclusion 
• This is a very common strategy, because mathematicians often 

state the answer to a mathematical question in the form of a 
theorem that says if certain assumptions (hypotheses) of the 
theorem are true, then some conclusion must also be true 

• This strategy is obviously legitimate, since the hypotheses are 
conditions for the conclusion, so assuming them just limits us 
to the cases to which the theorem applies 



Example: Conditional Proof 
Let m and n be integers. If both m and n are odd, then mn is odd. 

1. Show (m, n are odd integers) →           
(mn is odd) 

2. m, n are odd integers Assumption CD 

3.   Show mn is odd 

4.   m = 2q + 1 Definition of odd integer 

5.   n = 2r + 1 Definition of odd integer 

6.   mn = (2q + 1)(2r + 1) 

7.   mn = 4qr + 2q + 2r + 1 

8.   mn = 2(2qr + q + r) + 1 

9.   mn is odd Definition of odd integer, since 2qr + 
q + r is an integer 



Indirect Proof 
• This is also known as reductio ad absurdum or proof by 

contradiction 
 
• To prove P, assume P is false and then derive a contradiction 
 
• This strategy is legitimate, because it shows that P can’t 

possibly be false, so it must be true 
 
• This strategy is often used to prove negative claims (e.g., 

“there is no x,” or “x is not true,”) 
 
• This is a very powerful strategy, and is often the “go to” 

strategy when no other approach will apparently work 



Example: Indirect Proof 
There is no smallest positive rational number. 

1. Show there is no smallest positive  
rational number 

2. There is a smallest positive rational 
number, q 

Assumption ID 

3. Let r = q/2 

4. 0 < r < q From 3 

5. There exist m and n s.t. q = m/n and n ≠ 0 Definition of rational number 

6. r = m/2n From 3, 5 

7. r is rational Definition of rational number, since 
m and 2n are integers and 2n ≠ 0 

8. r is a positive rational number less than q From 4, 7 

9. ⊥ From 2, 8 



Mixing Strategies using Subproofs 
 

• Often we need to complete “proofs within a proof,” or 
subproofs 

 
• Often subproofs use a strategy different than the overall 

strategy 
 

• (A “mixed strategy” can also be used within a proof: deriving a 
contradiction allows you to conclude a proof, even if you 
didn’t begin with an indirect strategy!) 



Example: Subproofs 
We’ll use an indirect subderivation within a conditional proof. 
Let m, n be integers. If mn is odd, then both m and n are odd. 
 1. Show (mn is odd) → (m and n are odd) 

2. m and n are integers s.t. mn is odd Assumption CD 

3. Show m and n are odd 

4. m and n are not both odd Assumption ID 

5. Either m or n is even From 4 

6. Without loss of generality, assume m is   
even 

(do this when it’s sufficient to 
prove a result for only 1 of the 
cases) 

7. m = 2k Definition of even integer 

8. mn = 2kn Multiply both sides by n 

9. mn is even Definition of even integer, since kn 
is an integer 

10. ⊥ From 2, 9 



Review and the Contrapositive 
• Review—to prove something of form: 

• P ∧ Q, prove both P and Q (directly or indirectly) 
• P ∨ Q, prove either P or Q (directly or indirectly) 
• P → Q , use conditional proof 
• ¬P, use indirect proof 
• P ↔ Q, prove each direction using conditional proof (see below) 

• Tip: Often to prove P → Q it’s easier to prove ¬Q → ¬P, which 
is logically equivalent 

• Let’s show why, which gives us a chance to point out that 
biconditional claims [e.g., (P → Q)  ↔ (¬Q → ¬P)] are really 
conjunctions of two conditionals 

• To prove a conjunction (per above), prove each conjunct 
• Since the conjuncts of a biconditional are conditionals, prove 

each by conditional proof 



Proof: The Contrapositive 
First conditional: 

1. Show (P → Q) → (¬Q → ¬P) 

2. P → Q Assumption CD 

3.  Show ¬Q → ¬P 

4.  ¬Q Assumption CD 

5.   Show ¬P 

6.   ¬P 2, 4 Modus Tollens 



Proof: The Contrapositive 
The second conditional: 

1. Show (¬Q → ¬P) → (P → Q) 

2. ¬Q → ¬P Assumption CD 

3.  Show P → Q 

4.  P Assumption CD 

5.   Show Q 

6.   ¬¬P 4, Double Negation 

7.   ¬¬Q 2, 6 Modus Tollens 

8.   Q 7, Double Negation 



Existential (Constructive) Proofs 
• Existence claims (of the form ∃xPx) are sometimes proven 

directly or conditionally from premises or hypotheses, or 
proven indirectly 

 
• Typically, though, they are proven by construction 
 
• This strategy involves constructing an example (finding 

something with the relevant property) and then generalizing 
using existential generalization 

 
• Existential generalization just says that since m has the 

property P, there must be at least one thing which has the 
property P 



Example: Existential Proof 
Prove there exists a rational number x such that x − x2 > 0 

1.  Show ∃x(x − x2 > 0) 

2.  Let a = ½  

3.  a − a2 = ½ − (½)2  = ½ − ¼ = ¼  Substitution, arithmetic 

4.  a − a2 > 0 From 3 

5.  ∃x(x − x2 > 0) 4, Existential Generalization 



Aside: Intuitionism 
• Intuitionism is a school of thought amongst some (a minority 

of) mathematicians that all existence claims must be proven 
constructively, rather than indirectly 
 

• The view amounts to saying that if you want to prove to me 
that an x exists, find me an x; it’s not sufficient to show that 
assuming there is no x leads to a contradiction if we have no 
example of an x 



Universal Proofs 
• Universal claims (e.g., of the form ∀xPx), are sometimes 

proven directly or conditionally from premises or hypotheses, 
or proven indirectly 

 
• Typically, though, they are proven using universal derivation 
 
• This strategy involves choosing an arbitrary object and proving 

it has the property P. Since the object was chosen arbitrarily 
and it has the property, all objects of that type must have the 
property. 



Example: Universal Derivation 
Prove that for every integer n > 1, n2 > n + 1 
 
1. Show ∀x∈Z((x > 1) → (x2 > x + 1)) 

2. Let a be an (arbitrary) integer s.t. a > 1 UD 

3.  Show a2 > a + 1 

4.  a ≥ 2 From 2, definition of integer 

5.  a2 ≥ 2a Multiply both sides by a 

6.  2a > a + 1 From 2, add a to both sides 

7.  a2 > a + 1 From 5, 6, Transitivity (a2 ≥ 2a > 
a + 1) 



Mathematical Induction 
• A special case of universal proof is mathematical induction—it 

is designed for proving statements about natural numbers 
 

• This strategy involves proving: 
1. The result/property is true for the base (first) case [base case] 
2. For every natural number n, if the result/property is true for n, 

then it is also true for n + 1  
  [inductive step or induction step] 

 
 



Example: Mathematical Induction 
Prove that for every natural number n, 2n > n 

1. Show ∀n∈N(2n > n) 

2. Show P(N) is true for n = 1 

3. 21 = 2 > 1 

4.  Show P(k) → P(k + 1) 

5.  2k > k Assumption CD 

6.   Show 2k + 1 > k + 1 

7.   2k + 1 > 2k  From 5, multiply both sides by 2 

8.   k ≥ 1 k is a natural number 

9.   k + k ≥ k + 1 From 8, add k to both sides 

10.   2k ≥ k + 1 From 9 

11.   2k + 1 > k + 1 From 7, 10, Transitivity (2k + 1 > 2k ≥ k + 
1) 



Strong Induction 
• Sometimes it’s best to use an alternate form of mathematical 

induction known as strong induction (it’s actually of equivalent 
strength to mathematical induction) 

 
• We want to prove P(n) for all natural numbers n 
 
• We prove ∀n[(∀k<nP(k)) → P(n)] 
 
• In other words, this strategy involves: 

1. Assuming P(k) is true for all natural numbers k < n, where n is 
an arbitrary natural number 

2. Then proving P(n) 



Example: Strong Induction 
Prove every integer n > 1 is either prime or a product of primes. 

 
1. Show ∀n∈N[(n > 1) → (n is prime or n is a product of 

primes)] 

2. If 1 < k < n, then k is prime or k is a product of primes Assumption  

3.  Show (n > 1) → (n is prime or n is a product of primes) 

4.  Case 1: n is prime…done for this case! 

5.  Case 2: n is not prime 

6.  Choose natural numbers a, b, s.t. n = ab, a < n, b < n 

7.  a, b > 1 From 6 (since a < n, b > 1, and 
similarly for a) 

8.  a and b each are either prime or a product of primes From 2 

9.  n is a product of primes From 6, 8 (n = ab and a, b are 
primes or the product of 
primes) 



Proof Strategies 
• To prove P from premises and there’s an obvious route, use 

direct derivation 
• To prove conditional statements, use conditional proof 
• To prove negations, or if you don’t know how to get going with 

another strategy, use indirect proof 
• To prove an existence claim, use proof by construction 

(existential generalization) 
• To prove a universal claim, use universal derivation 
• To prove a universal claim about natural numbers, use 

mathematical induction or strong induction 
 



Counterexamples (Disproving) 
• Finding a counterexample is much like an existential 

(constructive) proof…you just find an example! 
 

• Example: conjecture that if x > 3 then x2 − 2y > 5 
 

• Let x = 4 and y = 6 
 

• Then x > 3 but 42 − 2(6) = 16 − 12 = 4  (not > 5) 
 



Counterexamples by Truth Table 
• For some conjectures, though, we can find a 

counterexample by way of a truth table 
• Example: if P → Q and ¬P, then ¬Q 

 
 
 
 
 

• We can read off from the table that the 
argument is invalid due to row 3, so this is the 
counterexample, i.e., when P is false and Q is 
true 
 

P Q P → Q  ¬P ¬Q 

T T T F F 

T F F F T 

F T T T F 

F F T T T 



A Note on Decidability 
• Can we decide whether a conjecture is valid (provable) or invalid 

(there’s a counterexample)? 
• For some relatively simple types of arguments/conjectures, yes 
• These are the ones that can be characterized using propositional 

logic (basic sentences and logical connectives, i.e., negation, 
conjunction, disjunction, conditional, biconditional) only 

• For conjectures that require more resources to characterize—
predicate or quantified logic (i.e., quantifiers like ∀ or ∃, sets, 
functions, etc.)—then we only know it is valid when we find a proof 
or invalid when we find a counterexample! 

• There are even some conjectures (e.g., the continuum hypothesis) 
for which we know we’ll never be able to find a proof or 
counterexample!! 



A Note on Proof Systems 
• A proof is actually just a series of symbols (an ordered n-tuple) 

manipulated step-by-step using only a pre-allowed set of 
mechanical rules (rules of inference and/or rules of 
substitution) 

• The combination of allowable rules and allowable proof 
strategies forms a proof system 

• How do we know if a proof system is a good system? 
• We need to prove things about our system of proof—this is 

the domain of meta-logic 
• A good proof system must be: 
 Sound—if there’s a proof, the argument must be valid 
 Complete—if the argument is valid, there must be a proof 

possible in the system 
 



Further Aside on Proof 
Systems  
• If a proof system is sound and complete, syntactic and 

semantic concepts will coincide (e.g., consistency and 
satisfiability) 

 
• If a proof system is sound and complete, it is compact (in the 

logic sense): a set of sentences has a model (is satisfiable) if 
and only if every finite subset has a model (is satisfiable) 

 
• Compactness in the logic sense is actually equivalent to 

compactness in the topological sense!  
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Rate this presentation on the 
conference app. 
www.nctm.org/confapp 
 
 
 
 

Download available presentation 
handouts from the Online Planner! 
www.nctm.org/planner 
 
 
 
 

Join the conversation! Tweet us 
using the hashtag #NCTMDenver 
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