Learning Mathematics Concepts Through Context with Pictures and Technology

NCTM 2013

John Diehl

Hinsdale Central HS (Retired)

Use MODIFY y = A|x - H| + K

Create a Model by Using Key Points

Harbour Standard Window

Press [OPTN]

Create a Model by Estimating the Vertex and One x-intercept

Create a Model by Estimating the Vertex and One x-intercept

Use Multiple Models

Footbridge [-3.3,8.3][-2.1,3.7]

A Cosine Function Model

```
Graph Func
Y1≣1.5sin
                 \left(\frac{\pi}{6}(x-3)\right)
Y2=|1.5cos
```

A Sine Function Model

A Exponential Model by Regression

A Exponential Model by Regression

```
ExpReg(a \cdot b^x)
    a = 1.62600217
    b = 0.844703
    r = -0.9952578
    r^2 = 0.99053828
  MSe = 1.398e - 03
y=a \cdot b^x
```

Compare by Computing the Area by Integration

A Parametric Model

Fountain [-3.95,10.07][-1.30,5.60]

A Parametric Model

```
Math Rad Norm1
                  Real
Graph Func
                    :Param
Xt1■14T
                           Г — 1
Yt1■4-16T<sup>2</sup>
Xt2:
  ECT DELETE TYPE TOOL MODIFY
```

A Parametric Model

A Parametric Model for Circular Motion

Ferris [-7.1,5.1][-.66,5.34]

The Vertical Position

- Let's assume it takes 60 seconds for a revolution
- •Also assume that you are at the minimum point at t=0
 - •The period is $\pi/30$
 - To model vertical position by a sine function,
 the shift is 15

 $Y = 2.5 + 2.1 \sin (\pi/30(T - 15))$

The Horizontal Position

•The horizontal position is 0 at time 0, and reaches a max (furthest right) at time t = 15.

$$Y = 2.1 \cos (\pi/30(T - 15))$$

A Parametric Model for Circular Motion

