Learning Mathematics Concepts Through Context with Pictures and Technology

NCTM 2013
John Diehl
Hinsdale central HS (Retired)


## Use MODIFY y = A|x-H|+K



## Create a Model by Using Key Points

Harbour Standard Window

## 自 Press [OPTN]



## Create a Model by Estimating the Vertex and One x-intercept



# Create a Model by Estimating the Vertex and One x-intercept 

自


## Use Multiple Models

Footbridge $[-3.3,8.3][-2.1,3.7]$

## 自 Press [OPTN]



## A Cosine Function Model



## A Sine Function Model

## 自



## A Exponential Model by Regression



## A Exponential Model by Regression

$$
\begin{aligned}
& \text { ExpReg }\left(\mathrm{a} \cdot \mathrm{~b}^{\wedge} x\right) \\
& \mathrm{a}=1.62600217 \\
& \mathrm{~b}=0.844703 \\
& \mathrm{r}=-0.9952578 \\
& \mathrm{r}^{2}=0.99053828 \\
& \mathrm{MS}=1.398 \mathrm{E}-03 \\
& \mathrm{y}=\mathrm{a} \cdot \mathrm{~b}^{\wedge}
\end{aligned}
$$

## Compare by Computing the Area by Integration



## A Parametric Model

Fountain [-3.95,10.07][-1.30,5.60]

## 自 Press [OPTN]



## A Parametric Model



## A Parametric Model

## 自 Rath Rad Norm1 Real



## A Parametric Model for Circular Motion

Ferris [-7.1,5.1][-.66,5.34]

## 自 Press [OPTN]



## The Vertical Position

-Let's assume it takes 60 seconds for a revolution
-Also assume that you are at the minimum point at $\mathrm{t}=0$
-The period is $\pi / 30$
-To model vertical position by a sine function,
the shift is 15

$$
Y=2.5+2.1 \sin (\pi / 30(T-15))
$$



## The Horizontal Position

-The horizontal position is 0 at time 0 , and reaches a max (furthest right) at time $t=15$.

$$
Y=2.1 \cos (\pi / 30(T-15))
$$

## A Parametric Model for Circular Motion



