Exceptional \& Free
 Online Resources for
 Teaching Probability

2013 NCTM Regional Conference - Louisville

Sarah DeLeeuw \& Ann Kong

November 8, 2013

Introductions

Who are we?

Who are YOU ?

THE MATH SALUTE

NCTM

We are

(※2̂|ILUMINATIONS Resources for Teaching Math

Contact Us

NCTM Staff dedicated to the Illuminations Project.

Online Projects Manager
Sarah DeLeeuw

Illuminations Coordinator Ann Kong

search site
Lessons
NCTM
Standards
Math Standards
Pre-K-2
6-8
Number \& Operatives
Algebra
\square Geometry
\square Measurement
\square Data Analysis \& Probability

\triangle NCTM Headquarters Office

```
SEARCH
```

NATIONAL COUNCIL OF

Welcome

S6	60	K	4
\％	牰	嫁	（31）
（47）	\＄	炏	年
效	外	（28）	如

NATIONAL COUNCIL OF

What'd You Get?

Session 166

Whoa!

How did that work?

Check out NCTM Illuminations YouTube to find out.

Ready. Set. GO!

Exceptional \& Free
 Online Resources for
 Teaching Probability

2013 NCTM Regional Conference - Louisville

Sarah DeLeeuw \& Ann Kong

November 8, 2013

Connect With Us

- You Tube
- Facebook
- Twitter
- Pinterest
- Thinkfinity
- Google+ (coming soon)

NCTM

http://illuminations.nctm.org

>600 lesson plans

>100
interactives

BRight Ideas

e-newsletter

>120
Brainteasers

success stories

Illuminations

Lessons include:

Instructional					
	Plan	Objectives + Standards	Materials	Assessments + Extensions	Questions + Reflection
Related Resources	Print All				

Activities Include:

Activity
Instructions
Exploration
Related Resources

calculationnation.nctm.org

- 12 interactive math games

Two players compete from any two computers

- Ranks based on wins/losses
- Tracks where in the world competitors live
- Lesson Plans: http://illuminations.nctm.org/CN
- More games and features on the way...

The Game of SKUNK

My math teacher might collect homework today; should I do it?

CHOICE vs CHANCE

Playing Skunk

Goal: Accumulate the greatest possible sum the 5 rounds.

- To accumulate points, a pair of dice is rolled.
- Everyone standing is an active player. Sit to become inactive.
- An active player gets the sum of the dice and records it on their score sheet, unless a "one" comes up.
- If a "one" comes up, then....

1. The round is over
2. ALL points in the column are wiped out.

- If "double ones", then...

1. The round is over
2. ALL points accumulates in prior columns gets wiped out too.

Mock Game : Jane vs. John

Let’s Get Movin!!

The Pedagogy

- Should we find out who the winner is?

winning vs. self-improvement

- Should this game be played more than once?
playing for fun vs. playing after figuring out the math
- What should the teacher do while students are playing the game? Think-pair-share!

SKUNK- The Big Picture

- Which part of this game is CHOICE? Which games involve mostly choice?
- Which part of this game is CHANCE?

Which games involve mostly chance?

- Create a strategy for the game.

Write it down first. Then, share it with a neighbor.

SKUNK- The Math

- Write down all the possible outcomes.
- On average, how many good rolls happen before a 1 or 1-1 occurs?
- How would this change how you play the game?
- When a "one" does not come up, what is the average score on a single roll of a pair of dice?

	1	2	3	4	5	6
1	$X X$	X	X	X	X	X
2	X	4	5	6	7	8
3	X	5	6	7	8	9
4	X	6	7	8	9	10
5	X	7	8	9	10	11
6	X	8	9	10	11	12

SKUNK Questions

What other questions could you ask to get your students thinking?

Think-pair-share
$\mathbf{S}|\mathbf{K}| \mathbf{U}|\mathbf{N}| \mathbf{K}$

Oh. no - a one! You lose all points in this column if you're standing!

The Rules of Skunk

Game of Nine Cards

- Materials: Nine cards numbered 1-9
- Object: To get a combination of exactly three cards in your hand that add up to 15

Game of Nine Cards

- Sample Game:

Player 1 Wins: 2 + 9 + $4=15$

Game of Nine Cards

Now what?

You Play!

Mister Mc Math
Mrs. Bennefield
Piedmont, Alabama

Questions to Consider

- Who is more likely to win - the first player or the second player? Why?
- Will someone always win? Lose?
- What can you do to ensure that you don't lose? (Or is that not possible?)
- Is there a "best" card to choose?
- Why do we use a sum of 15 ?

A Winning Strategy?

- You play first, pick 8.
- Your opponent then chooses 3.
- What are the three numbers that you can choose to ensure a win?

Yours

His or Hers

A Winning Strategy?

- Your opponent plays first, picks 6.
- You choose 5.
- Your opponent picks 4.
- Which two numbers should you not pick?

3

His or Hers

A Winning Strategy?

- Your opponent plays first, picks 7.
- Then you choose 2.
- Your opponent picks 9.
- Which three numbers should you not pick?

Yours

His or Hers

NCTM

More Sophisticated Yet?

- If your opponent plays first and picks an even number, what number should you choose to avoid a loss?

Another App from Under the Sea

Tablet, phone, PC

A Hint from Under the Sea

Modifying the Game of Nine Cards

- Label the nine cards as follows:

$$
5,12,19,26,33,40,47,54,61
$$

The winner must get three cards that total 99.

Modifying the Game of Nine Cards

- Label your nine cards with fractions:

$$
\begin{gathered}
1 / 6,5 / 24,1 / 4,7 / 24,1 / 3,3 / 8 \\
5 / 12,11 / 12,1 / 2
\end{gathered}
$$

The winner must get three cards that total 1.

Mahoney, John. What Is the Name of This Game?
Mathematics Teaching in the Middle School, October 2005.
NCTM

Modifying the Game of Nine Cards

- Use words! Label the cards as follows:

TIED, HOT, HEAR, TANK, WASP,
WOES, SHIP, HORN, BRIM
The winner must get three cards that bear the same letter.

Mahoney, John. What Is the Name of This Game?
Mathematics Teaching in the Middle School, October 2005.

Modifying the Game of Nine Cards

- Use exponents!
- Label the nine cards as follows:

$$
x, x^{2}, x^{3}, \ldots, x^{9}
$$

The winner must the product get x^{15}.

From NINE Cards to SIXTEEN

The winner would use the sum of four cards to win.

Mahoney, John. What Is the Name of This Game?
Mathematics Teaching in the Middle School, October 2005.

NATIONAL COUNCIL OF

You tell me!

What sum should the winner need to win?

Another Extension

- The winner is the first player to obtain the sum of exactly 15 from any TWO OR MORE cards.
- Does your strategy change? How so?
- Double the deck \& double the sum.
- How does THAT change the
 game?

Reminder: What is the Goal?

- How does your strategy from the first version of the game of 9 cards compare to the strategy for these modifications?
- REFLECT: How did I come up with these other versions for the game of 9 cards?

Options \& Modifications in App

Learning is fun. Get addicted!

Deep Sea Duel is FREE

 online at Illuminations and Google Play and the App Store for phones and tablets.Upgrade that includes a 2-Player Version and even
 MORE modifications coming soon!

What a constraint!

Let's Make a Deal

NCTM

The Problem

NATIONAL COUNCIL OF
teachers of mathematics

A Present!

Stick or Switch

The Options:

-Strategy 1: Stick with the original door - Strategy 2: Flip a coin, stick if it shows heads, switch if it shows tails
-Strategy 3: Switch to the other door

Which Strategy Do You Choose?

Guess
 Simulation

Theoretical Model

Simulate: Adjustable Spinner

Illuminations.nctm.org/Adjustable Spinner

Number of spins: 1000 Spin
Skip to End
Reset
Number of spins so far: 1000
Color Count Experimental \% Theoretical \% \square 1-prize 350 35.0% 33.3% 2 340 34.0% 33.3% $\square 3$ 310 31.0% 33.3%

Pointing to: Door 3

Number of sectors:

Strategy 1: STICK

Number of spins so far: 1000

Color	Count	Experimental \%	Theoretical \%
\square 1-prize	350	35.0%	33.3%
$\square 2$	340	34.0%	33.3%
\square	310	31.0%	33.3%

Choose Door 1. What does Monty do? What do you do? Do you win or lose?

Choose Door 2. What does Monty do? What do you do? Do you win or lose?

Choose Door 3. What does Monty do? What do you do? Do you win or lose?

Strategy 2: FLIP A COIN

Number of spins so far: 1000

Color	Count	Experimental \%	Theoretical \%
\square 1-prize	350	35.0%	33.3%
$\square 2$	340	34.0%	33.3%
\square	310	31.0%	33.3%

Choose Door 1. What does Monty do?
Door 2: What do you do? Flip a coin \rightarrow Stick. Do you win or lose?
Flip a coin \rightarrow Switch. Do you win or lose? X
Door 3: What do you do? Flip a coin \rightarrow Stick. Do you win or lose?
Flip a coin \rightarrow Switch. Do you win or lose? X
Choose Door 2. What does Monty do? What do you do?
Flip a coin \rightarrow Stick. Do you win or lose? X
Flip a coin \rightarrow Switch. Do you win or lose?
Choose Door 3. What does Monty do? What do you do? Do you win or lose?
Flip a coin \rightarrow Stick. Do you win or lose? X
Flip a coin \rightarrow Switch. Do you win or lose?

Strategy 3: SWITCH

Number of spins so far: 1000

Color	Count	Experimental \%	Theoretical \%
\square 1-prize	350	35.0%	33.3%
$\square 2$	340	34.0%	33.3%
$\square 3$	310	31.0%	33.3%

Choose Door 1. What does Monty do? What do you do? Do you win or lose?

Choose Door 2. What does Monty do? What do you do? Do you win or lose?

Choose Door 3. What does Monty do? What do you do? Do you win or lose?

Strategy 1: Stick

Strategy 2: Flip a Coin

$P($ win $)=7 / 12$

Strategy 3: Flip

$P($ win $)=2 / 3$

Simple and Oh So Fun

- Write a positive integer on a piece of paper.
- Show it to your neighbor.
- The winner is...

Whoever wrote the smallest integer NOT written by anyone else.

Questions? Comments ? CC?

Contact Us

NCTM Staff dedicated to the Illuminations Project.

Online Projects Manager
Sarah DeLeeuw

Illuminations Coordinator Ann Kong

\square Lessons	\square Interactives
NCTM Standards	Common Core Math Standards
$\begin{aligned} & \text { Pre-K-2 } \\ & 6-8 \end{aligned}$	3-5 9-12
Number \& OperationsAlgebraGeometryMeasurementData Analysis \& Probability	

```
```

SEARCH

```
```

```
```

SEARCH

```
```

sdeleeuw@nctm.org akong@nctm.org

Thinkfinity | verizon ramemen

NATIONAL COUNCIL OF

$15 q-5 q$

NCTM

