Learning Mathematics through Physical Movement Activities NCTM 2013
Dr. Joanne Margaret Hynes-Hunter//dr.joanne_hunter@yahoo.com

Slide 1 Slide

Who am I?

\square Integrating physical activities with academic subjects for $23+$ years in pre k 12 and university settings.
\square Written numerous books on integrating academic subjects with physical activities.
\square Currently writing curriculums, grants for schools/companies, presentations/trainings on this and many other topics.
\qquad

Research

\qquad
\qquad
\qquad
\square To improve our brains, we have to move our bodies (Increases blood flow \& oxygen to brain).
\square Exercisers have improved short-term memory, exhibit faster reaction times \& demonstrate higher levels of creativity.
\qquad
\qquad

Music neuroscience research:

- A steady beat affects attention behaviors in humans.
■ Music keeps students engaged in an activity for longer periods of time.

Slide

Research (Continued)

- We process musical beats in the premotor cortex of the brain, an area also related to attention (Bengtsson et al. 2008).
- Students are more engaged when listening to a steady beat than when listening to verbal only instructions.
- Therefore, listening to a steady beat pattern \qquad during activities in the classroom promotes better retention \& increased engagement.

Learning Mathematics through Physical Movement Activities NCTM 2013
Dr. Joanne Margaret Hynes-Hunter//dr.joanne_hunter@yahoo.com

Slide
4

Slide

5

Slide

Math Activities

\square When observing younger students at play, we see that they naturally engage in mathematical activities.

- They sort, arrange, stack, organize \& count toys.
- They build \& compare towers to see whose is the tallest.
- They use color \& shapes to create patterns, \& notice patterns in their surroundings.
"

Math Activities
When observing younger students at play, we see that they naturally engage in mathematical activities. - They sort, arrange, stack, organize \& count toys. ■ They build \& compare towers to see whose is the tallest. ■ They use color \& shapes to create patterns, \& notice patterns in their surroundings.

\qquad

Learning Mathematics through Physical Movement Activities NCTM 2013
Dr. Joanne Margaret Hynes-Hunter//dr.joanne_hunter@yahoo.com
Slide

Math Activities (Continued)

\qquad
\square The mathematics chosen for these games are based on recommendations from: \qquad

- National Council of Teachers of Mathematics,
- National Association of Educators of Young Children, and
- Recommendations for preschool standards as developed at the Conference on Standards for Prekindergarten and Kindergarten Mathematics Education.

Slide

Math Activities (Continued)

\square FUN developmentally appropriate activities
\qquadStandards basedNo eliminationEveryone participates/no waitingInclude authentic assessments
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Slide

Game 1: Repeat Patterning

\qquad
$000 \triangle \Delta \Delta \Delta \Delta \Delta \Delta$ \qquad
$\square 6$ volunteers
\square Say pattern out loud w/students clapping (or pat knees, or combo: clap for big, pat knees on little)
\square Student pick up ball (in correct sequence), performs locomotor task to 4th dome, places ball on dome, performs locomotor task back to line, sits at the back of the line
\square Waiting students do fitness skill (count a loud)
\square Get $1^{\text {st }}$ ball, take to goal, perform task into goal, (retrieve ball from goal), bring back to line
\square Waiting students do fitness skill (count a loud)
\qquad
\qquad
\qquad
\qquad

Learning Mathematics through Physical Movement Activities NCTM 2013
Dr. Joanne Margaret Hynes-Hunter//dr.joanne_hunter@yahoo.com
Slide

Game 1: Repeat Patterning

\qquad

Assessment/modifications:

\square Tell student to draw the pattern \qquad
\square Draw pattern; \# balls in consecutive order
\square Predict the 10th ball
\square Identify odd and even numbers
\qquad
\square Use other objects other than balls (bean bags, scarves)
\square Use colors (shapes, transportation, etc.)
\square Repeat patterning using 2 different objects (ball, beanbag, ball, beanbag, etc.)

Slide

Teaching the BRAIN lo see patterns and seguences:

\qquad
\qquad

Standards - What we are supposed to teach
 $+$
 Meaning - Learning will not occur if standards are not meaningful
 Patterns - Seeing patterns promotes higher level thinkings

\qquad
http://www.lodestarlearning.com/newsletter/HaenkeBrainBasedArticle.pdf

Slide

Patterns and the Brain

\qquad
\qquad

Sensory stimuli enter the brain \& neural networks check it out:
\qquad

Match: the brain determines that the stimuli
"makes sense" (has meaning)

- No match:
\qquad
\square Brain pays attention for awhile as new stimuli is novel information
- If no sense made of stimuli brain will not process any further
\square Our job is to make "matches" thus creating patterns

Learning Mathematics through Physical Movement Activities NCTM 2013
Dr. Joanne Margaret Hynes-Hunter//dr.joanne_hunter@yahoo.com
Slide

Making Matches + Creating Patterns $=$ Meaningful Learning

Pose appropriate level of challenge
\square Provide time for practice \& give feedback
\square Tap into students' needs \& goals - connect to their livesConnect what is being taught to current eventsProvide choices to reduce stress \& increase intrinsic motivation
\square Tie into past success \& experience

Slide

Game 2:How Many Ducks

\qquad
\qquad

```
\square "Adams family"
(First stanza)
\square How many ducks (clap, clap)
\square How many ducks (clap, clap)
How many ducks, how many ducks, how many ducks (clap, clap)
(Second stanza)
\square How many baby ducks does mother, have following her in line?
\square Quack, quack, quack, quack, quack, quack
Let's count together & see (students count ducks & teacher keeps
beat): 1, 2, 3, 4,5,6
(Third Stanza)
\square How many ducks? SIX, SIX (clap while saying "six")
\square How many ducks? SIX, SIX (clap while saying "six")
\square How many ducks, how many ducks, how many ducks? SIX, SIX
    (clap while saying "six")
```

Slide

After 3rd stanza, student \#1:
\qquad

- Performs locomotor skill to the 6th ball, \qquad
- takes it,
- performs locomotor skill to goal,
- performs task to get ball into goal (throw, balance, roll, etc.),
\qquad
- performs locomotor skill back to line.
\square Waiting students do fitness skill (push-ups, sit ups, jumping jacks, etc.) for \# of reps there are baby ducks (i.e. 6 sit ups), counting out loud
Continue counting down

Learning Mathematics through Physical Movement Activities NCTM 2013
Dr. Joanne Margaret Hynes-Hunter//dr.joanne_hunter@yahoo.com
Slide

Game 3:
 Numbers \& Dots

\square Each student gets a necklace (have multiple numbers/dots given d.a.p. i.e., if can only count to $5, \mathrm{w} / 20$ students, need 4 sets of 1-5 numbers/dots).On start signal, students perform task.When music stops, students find matching number/dot partner as quickly as possible.
\square Together, they collect that many balls \& put in goal.Play multiple rounds \& rotate necklaces

Slide

Game 3: Numbers \& Dots

\qquad
\qquad

Modifications:
\square Use a different color for each set (blue for 2, etc.)
\qquad
\square Time each round \& see if students improve times.
\square Increase/decrease numbers/dots sets.
\square Ten Black Dots By Donald Crews is counting book that shows pictures that can be made with different numbers of dots.
\square "What if?/I wonder?" Question: What can we make with black dots? What happens if we make a path with black dots? Where would it lead us? (use any number up to 100 polyspots (dots) and make a path for students to follow. How far could 20 black dots take you? 50? 100?
\qquad
\qquad
\qquad
\qquad

Slide

Game 4: Circle Chase

\qquad
\qquad
\qquad
Calculate math problem. If your \# is called, foot dribble ball around outside of domes until reaching original position.

- Kick ball into goal (must stay in).
- Top $=3$ pts; side $=1$ pt
- Other students perform fitness activity. Count reps until all students shot ball. The \# of reps is added to the kicking score.

Learning Mathematics through Physical Movement Activities NCTM 2013
Dr. Joanne Margaret Hynes-Hunter//dr.joanne_hunter@yahoo.com
Slide

Game 4: Circle Chase

```
Check This Out:
\squarePerform other skills while running, getting ball
    into goal, & fitness activities: lacrosse cradling,
    volleyball setting/bumping, slide, hop, skip, etc.
EASIER
W Walk around circle.
\square \mp@code { D e c r e a s e ~ r a d i u s ~ a r o u n d ~ g o a l . }
HARDER
- Award points for first goal (rather than everyone
        receiving a point for a successful shot).
- Increase radius around goal.
- Increase number to 3.
- Other computations.
```

Slide
Game 4: Circle Chase: Assessment
(use the numbers/concept used in the game)

| | Directions: Glue your colored/cut
 pictures in the right section.
 These are odd numbers |
| :--- | :--- | :--- |
| | |
| (or write a word sentence | |
| with written odd/even | These are even numbers |
| numbers; or have students | |
| write a word sentence, etc.) | |

Slide

Learning Updates

\qquad
\qquad
Physical activity stimulates body to create a hormone like Miracle-Gro for the brain.
\square Hands-on explorations contributes to understanding of abstract concepts \& 4 critical thinking skills: making distinctions, recognizing relationships, organizing systems \& taking multiple perspectives.
\square Exercise increases key proteins that build brain's infrastructure for learning \& memory.

Learning Mathematics through Physical Movement Activities NCTM 2013
Dr. Joanne Margaret Hynes-Hunter//dr.joanne_hunter@yahoo.com
Slide

Game 5: Quick Math

\qquad
\qquad
\square In partners, stand facing partner
ㅁ Pound closed fist into open hand stating "I love math!
\square On "math" show 0-5 fingers.
\square First to add (multiply, etc.) "wins" and runs away from partner trying to get to the safety line behind them before getting tagged by partner.
\square Show fingers, teacher shows greater than or less than sign. If greater than is called partner with greater number chases other partner.

Slide

Game 6: Rounding off while $0: 00$ slimming down

\square What does rounding off a number mean? Round off 17 to the nearest multiple of 10 . Let's put that concept to work as we shape up our bodies and minds.
Partners stand on numbered polyspot
\square On signal jog around inside area.

- On signal go to a polyspot, look under it to reveal a \# card, remember \#, go back to home polyspot.
\square Add (multiply, etc.) the 2 numbers for a sum, round off the sum to nearest multiple of ten. Poartners look under polyspot to reveal fitness card \& perform fitness exercise on card that \# of reps.

Slide

Game 7: Macarena Multiplication

\square Perform macarena dance steps to multiplication table.Instead of "hey macarena!" "Hey the 2's!" (or the multiplication table being used)
\square Modification:

- Try in a push up position!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Learning Mathematics through Physical Movement Activities NCTM 2013
Dr. Joanne Margaret Hynes-Hunter//dr.joanne_hunter@yahoo.com
Slide

Game 8: \$5.00

\square Group of 4, one is the thrower.Start with $\$.25$ incrementsEach catch is worth that amount. If miss: continue, go back to 0 , subtract \$. 25 . \qquadContinue till reach $\$ 5.00$ or 3 throws/change throwerModifications

- Start w/amount of money
- First catch $=\$.25$, second $=\$.50$, etc.

Slide

Game 9: Bowling makes cents

10 pins per group of three students
$\square 1$ bowler; 1 score keeper, 1 pin spotter
\square Each bowling pin is marked with money values or percentages
\square When we aim at a target, the brain in a split second calculates the path, the force, the angle of the roll/throw and distance it must travel to hit the target. That's a lot of problem solving! Math is a problem solving activity too. Let's use bowling to help us with our math skills.

Slide

Game 9: bowling (continued)

Pins marked in dollars and cents.Add up the sum of pins knocked down for each student.
\square Modification:

- Play regular bowling with each pin marked as $1 / 10^{\text {th }}$. As a $\%$ of the whole, each student gets $1 / 10^{\text {th }}$ for each pin knocked over. A strike $=100 \%$. The score sheet reflects the new scoring. Total score is in whole and decimals.

Learning Mathematics through Physical Movement Activities NCTM 2013
Dr. Joanne Margaret Hynes-Hunter//dr.joanne_hunter@yahoo.com
Slide
28

Game 10: Human Graphs

\square Perform different exercises/sport skills for 30 seconds.
\square Students time how many they do.Students line up one behind the other representing a line on the bar graph.Transfer the information to paper.

Slide

Game 11: Estimation

\square Estimate how many of the following you can do in one minute:

- Jumping jacks
- Steps on a stepper
- Jumps over a line
- Laps back and forth
\square Modifications: Partner activities
- Throwing a ball
- Sit/stands
- Dish rag

Slide

Game 12: Laws of physics labs

 http://www.exploratorium.edu/explore/staff picks/sports_science

Learning Mathematics through Physical Movement Activities NCTM 2013
Dr. Joanne Margaret Hynes-Hunter//dr.joanne_hunter@yahoo.com
Slide
31
required of Sharks Goalic Kelly trucey when an opposing player
launches a speedy slapshot towards the net. If the opposing player has the net. If the opposing player has on the puck, Hrudey could easily be facing a shot of up to 90 mph . The reaction time of the goalic can be calculated using the equation

Describing motion is a part of mechanics known as kinematics Physicists call this a kinematic equation.
If someone shoots from the blue line, a rather generous distance of 60 feet, the time it takes for the puck to travel to the net is
Time[d
Time[d

Slide

\qquad
This doesn't allow very much time for the goalie to move himself and all that equipment over to save the puck. Try testing your own reaction time, for a better understanding of what a goalie has to do.

Lab to test own reaction time; etc.

Slide

Physics calculation labs

\square Calculate the force (Newtons) of an 8 lb bowling ball leaving the hand (accelerating) 5 miles per hour (show your work).
\square Knowing Newton's 2nd law of acceleration, a heavier bowling ball will take more or less force to accelerate? \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Learning Mathematics through Physical Movement Activities NCTM 2013
Dr. Joanne Margaret Hynes-Hunter//dr.joanne_hunter@yahoo.com
Slide

Physics calculation labs

\square Calculate the force (Newtons) of an 8 lb bowling ball leaving the hand (accelerating) 5 miles per hour (show your work). $8 \times 5=40$ NEWTONS
\square Knowing Newton's 2nd law of acceleration, a heavier bowling ball will take more or less force to accelerate? MORE

Game 13: Fitness calculation labs

1. The method for establishing your personal target zone is given below. Work out your own target zone.
a. Maximum heart rate $\times 70 \%=$ target heart rate zone.
b. Maximum heart rate $=220-$ your age.
c. 220-your age = \qquad (your maximum heart rate)
d. Maximum heart rate x. $7=$ (your target heart rate zone)
2. What would your target heart rate zone be if you were 45 years old? Show your work and circle your answer.

Slide

Game 13: Fitness calculation labs

3. Compare your target heart rate you calculated with the average of 140 . Is your threshold higher, lower or about the same?
4. Is the target heart rate for a 45 year old person higher, lower or about the same?
5. What conclusion can you draw about the target heart rate and increasing age?

Learning Mathematics through Physical Movement Activities NCTM 2013
Dr. Joanne Margaret Hynes-Hunter//dr.joanne_hunter@yahoo.com

Slide

Game 14: That's the way the Ball Bounces

Test 1: Ball Bounce Height Comparison
\square The first time you drop the ball do not take a measurement, just watch where the ball goes so the next time the observer knows where to look. This help to greatly increase the accuracy of the experiment.
\square Drop a ball from 1 foot off of the floor, slightly in front of a yardstick.
\square Measure the height the ball reaches after the first bounce and record.
\square Repeat this test from $1 / 2 \mathrm{ft}, 2 \mathrm{ft}$, and 3 ft .
\square Do this test for each ball and record data.
\square You may have to try more than once to accurately judge the height of the first bounce.

Slide

Slide
Game 10: Ball Bounce Experiment

Test 2: Ball Bounce Time Comparison
\square Drop a ball from a height of 3 ft , timing from when the ball is released until the ball stops bouncing. Record the time.
\square Talk with the students about coming up with a system for releasing the ball and starting the stop watch. Possible suggestions are to have the same student drop the ball and start the watch, or have the two students count down from five.Repeat this test for each ball.

Learning Mathematics through Physical Movement Activities NCTM 2013
Dr. Joanne Margaret Hynes-Hunter//dr.joanne_hunter@yahoo.com
Slide
40
\qquad

Slide
Game 10: Ball Bounce Experiment
\square Graph results. (If this activity is not able to be accompanied by a math lesson on graphing, introduce the topic before the activity starts or perhaps after the class has recorded its data and worked through it as a group. You could also make this into a homework assignment where the students must use an Excel spread sheet and graphing techniques as part of the assignment).
\square Compare results as a class. Collect data from all groups and have students create a class graph as a homework project.

Slide

Learning Mathematics through Physical Movement Activities NCTM 2013
Dr. Joanne Margaret Hynes-Hunter//dr.joanne_hunter@yahoo.com
Slide

Slide

Rubric for Performance Assessment					
Activity Title: Ball bounce experiment					
	1	2	3		
Criteria	Developing	Proficient	Advanced	$\begin{gathered} \text { Weight } \\ \text { (X factor) } \\ \hline \end{gathered}$	Subtotal
Data Collection	Missing some data and doesn't appear accurate.	Data may not be completely accurate.	All data is collected for each ball. Everything is accurate.		
Cooperation	No group work.	Little contribution to group work.	Contributes as expected to group work.		
Results	Graphs not complete.	Graphs not completely accurate and not labeled completely,	All graphs accurate and well presented.		
				Total:	
Teacher Comments:					

Slide

Game 10: Ball Bounce Experiment

\square Description of different graph types (line, scatter, bar, pie). Nice example pictures.
http://wwwslap.cern.ch/doc/NExS/html/node26 0.html
\square Examples of graphs and how to use different types, and how to calculate mean, medium,
mode. http://www.mathleague.com
Allows children to create graphs and experiments with probability. http://nces.ed.gov/nceskids/Graphing/

Learning Mathematics through Physical Movement Activities NCTM 2013
Dr. Joanne Margaret Hynes-Hunter//dr.joanne_hunter@yahoo.com
Slide

Game 10: Ball Bounce Experiment

Additional questions:

\square Explain how height effects a balls bounce.
\square Does the height a ball bounces increase in proportion to the height it is dropped from?

- Calculate the rebound rating: the ratio of height ball bounces to, divided by height ball dropped from (eg. rubber ball dropped from 50 inches, \& bounced to 35 ": $35 / 50=.7$
- That is, the ball rebounded 70% from a height of 50 inches.
- Calculate the rebound rating for each of the 3 levels for each ball in experiment 1.

Slide
Game 10: Ball Bounce Experiment

	$1 / 2 \mathrm{ft}$	2 ft	3 ft
Rubber			
Tennis			
Whiffle			
Golf			

After the calculations, explain if the height a ball bounces increase in proportion to the height it is dropped from. Use the percentage data above in your answer.

Slide

Game 4: Ball Bounce Experiment

Ball Bounce Experiment ANSWERS
\square Explain how height effects a balls bounce in at least 3 sentences. A BALL DROPPED FROM A HIGHER DISTANCE BOUNCES HIGHER.
\square Does the height a ball bounces increase in proportion to the height it is dropped from? CHECK THE CALCULATIONS AS ALL THE ANSWERS WILL BE DIFFERENT BASED ON THE DATA COLLECTED.
\square After you performed the calculations above, explain if the height a ball bounces increase in proportion to the height it is dropped from. Use the percentage data above in your answer. YES, THE HEIGHT A BALL BOUNCES INCREASES IN PROPORTION TO THE HEIGHT IT IS DROPPED FROM. THE STUDENTS SHOULD HAVE INCLUDED THE PERCENTAGE DATA FROM THE CALCULATION ABOVE.

Learning Mathematics through Physical Movement Activities NCTM 2013
Dr. Joanne Margaret Hynes-Hunter//dr.joanne_hunter@yahoo.com
Slide

In Conclusion:

Strong neural networks are built by incorporating physical activity into the school day.
\square The brain creates patterns \& we teach the brain to create patterns on a daily basis.Exercise itself doesn't make us smarter, instead exercise makes us more able to learn and focus.Physical activity is related to better cognitive health \& effective functioning across the lifespan.
http://news.illinois.edu/news/06/1218exercise.html

Slide

Thanks!

\qquad
\qquad

Questions?

For Handouts/

Additional Questions:

> Dr.joanne_hunter@yahoo.com

