Download from: www.tinyurl.com/PughOct17

"And I'm calling on our nation's governors and state education chiefs to develop standards and assessments that don't simply measure whether students can fill in a bubble on a test, but whether they possess 21st Century skills like problem solving and critical thinking and entrepreneurship and creativity."

President Obama, 1 March 2009
Using GeoGebra to Model Four Representations of Linear Equations
David Pugh, EdD \& much material from Dr. Alan Schoenfeld, UC Berkley dapugh@rochester.k12.mn.us

Typical Student Beliefs

Schoenfeld

- The mathematics learned in school has little or nothing to do with the real world.

Typical Student Beliefs

Schoenfeld

- Ordinary students cannot expect to understand mathematics; they expect simply to memorize steps and apply them to a problem.
- Goto

Broadway

- South 3 blocks
- Turn Right
- West 1 block
- On your left.

10/13/2013

The bottom line

Doyle, W. (1988). Work in mathematics classes: The context of students' thinking during instruction. Educational Psychologist, 23(2), 167-180.

Although students often accomplish a large amount of work, they seldom appear to be faced with tasks in which they are required to struggle with meaning. Of course, they often struggle with the meaning of work: What are they supposed to do, when do they have to finish, what is the answer to the fifth problem? But, meaning itself is seldom at the heart of the work they accomplish.

What is Math?

Schoenfeld, A. H. (1988). When good teaching leads to bad results: The disasters of "well-taught mathematics courses". Educational Psychologist, 23, 145-166.
"If the 'bottom line' is error-free and mechanical performance, students come to believe that that is what mathematics is all about."

The Practices in CCSS-M

> - Make sense of problems and persevere in solving them.
> - Reason abstractly and quantitatively.
> - Construct viable arguments...
> Model with mathematics
> - Use appropriate tools strategically
> Attend to Precision
> Qook for and make use of structure
> Look for and express regularity in repeated reasoning.

10/13/2013

How My Students Responded

KNOW	INTERACT	CREATE
Know / Do	Interact	Create
Something that could be asked on a multiple choice test.	Something that could be answered with a short answer or paragraph.	Something the student does without help from the teacher.
What the student needs to know in order to do the interact piece	Which one? Why?	Students with questions will be directed back to the interact section.
${ }^{10132013}$		12

Presentation 33
 Pugh: Using GeoGebra to Model Four Representations of Linear Equations

| This is a rough sketch of 3 |
| :--- | :--- | :--- |
| runners' progress in a 400 |
| meter hurdle race. Imagine |
| that you are the race |
| commentator. Describe |
| what's happening as |
| carefully as you can. You do |
| not need to measure |
| anything accurately. |

INTERACT

Match each line in the graph with a column from the spreadsheet data.
Find the speed of each runner between $10 \& 15$ seconds and between 55 and 60 seconds.

INTERACT

You are a coach for the three runners in this race. Write two bullet points for each runner to improve their race.

10/13/2013

Presentation 33

Pugh: Using GeoGebra to Model Four Representations of Linear Equations

CREATE
Record notes about your travel to school for 4 days. Pick two that have significant differences. For each of the two trips you choose, make a graph, data spreadsheet, and describe in a paragraph.

Scale Factor \& Similarity
Create - Choose one of the three projects
Price Comparison Choose a product that comes in at least three sizes. Compare the scale factor of the area or volume to the scale factor of the prices. Write a report on your findings. Paragraph headings for the report are: Introduction: What did you choose. Why did you choose it? Hypothesis statement: What do you think the outcome will be? Methodology: What did you do. Where did you get your data? How did you verify measurements? Data: What did you find out? Make a table comparing the scale factors. Conclusion: What is the better buy? When would the worse buy be a good option? Report must be typed and printed. You may use a report format or a powerpoint format with each paragraph represented by a slide.

Scale Factor \& Similarity
Watch this video on similarity and proportions. Get the packet from the files. Complete the worksheet on scale factors and similarity. Create a spreadsheet to find scale factors, and use the spreadsheet to check your work on the worksheet. Watch this video for directions. Complete the worksheet on scale factor, area, and volume.

Scale Factor \& Similarity
Interact
Find the diameter and price of similar pizzas from the same pizza place. Make a presentation that clearly shows the scale factor of the diameter, the scale factor of the area, and the scale factor of the price of each pizza. Come to a conclusion of which pizza is a better buy. Make a scale drawing. The drawing must be clearly labeled and include the scale factor used. Choose one: Find a picture and create an enlargement using graph paper or lined poster board. Choose a room in the school and create a scale drawing of the room using graph paper or lined poster board.

