

Operations with Rational Numbers: Not Just the Rules

October 17, 2013
NCTM Regional Conference
Baltimore, MD

Gloria Beswick

grbeswick@aol.com
Terry Parkey
tparkey@windstream.net

Think about your instruction or the mathematics program you use. What opportunities do the students have to use a variety of models to solve problems, understand concepts, or generalize ideas about fractions?

What models are used in the program or in the classroom?	
Area	Set
\square Part to whole	\square Part to whole
\square Equivalence, comparing, ordering	\square Equivalence, comparing, ordering
\square Operations	\square Operations
Number Line	Summary - In this program models ...
\square Part to whole	\square are never used
\square Equivalence, comparing, ordering	\square are sometimes used
\square Operations	\square permeate instruction

Are students provided with the opportunity to...
Answer questions in which models are \quad Use manipulatives to solve problems? given?

\square Never	\square Never
\square Occasionally	\square Occasionally
\square Throughout	\square Throughout
Use student drawn models to solve	Use models to help develop concepts or
problems?	generalize ideas?
\square Never	\square Never
\square Occasionally	\square Occasionally
\square Throughout	\square Throughout

Are there adjustments that I need to make to my instruction to assure that students experience a variety of models? If yes, describe.

Name That Fraction

Locate the fraction $\frac{7}{8}$ on the number line below.
Starting at 0, can you reach $\frac{7}{8}$ in seven jumps? What size jumps did you make? List them here.

Starting at 0, can you reach $\frac{7}{8}$ in five jumps? What size jumps did you make? List them here.

Can you do this a different way? How?
Starting at 0, can you reach $\frac{7}{8}$ in four jumps? What size jumps did you make? List them here.

Can you do this a different way? How?
Starting at 0 , can you reach $\frac{7}{8}$ in one jump? What size jump did you make? List it here.

Red Light-Green Light

Who is winning the Red-light, Green-light race? Here is the fraction of the distance covered from the start by the racers.

Mary: $\frac{3}{4}$	Harry: $\frac{1}{2}$	Larry: $\frac{5}{6}$	Han: $\frac{5}{8}$	Miguel: $\frac{5}{9}$	Angela: $\frac{2}{3}$

1. Predict.
a. Who do you think is winning?
b. Who can you rule out?
2. Explain how you decided who is winning the race:
3. Place each person in their approximate place along the race track:
4. More people arrive to play. Assign a fractional distance to how far they have traveled based on this information:
a. Alicia is between Harry and Han. \qquad
b. Benjamin is between Larry and Angela \qquad
c. Corey is between Han and Miguel. \qquad
Based on Teaching Student Centered Mathematics (2 ${ }^{\text {nd }}$ Edition) Activity 12.2, p. 209 (Gr. 3-5); Activity 8.1, p. 108 (Gr. 6-8), developed by Jennifer Bay-Williams.

Adding Fractions

Matt, Sam, and Carmen each added the numbers $\frac{3}{4}$ and $\frac{3}{8}$.

	Does the method for adding fractions make sense? Why or why not? Explain.
Matt's Method: "I halved $\frac{1}{4}$ then added." $\begin{aligned} & 1-\frac{1}{4}=\frac{3}{4} \\ & \frac{1}{8}+\frac{1}{8}=\frac{1}{4} \\ & \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{3}{8}=\frac{9}{8} \end{aligned}$	
Sam's Method: "I broke apart the $\frac{3}{8}$ to get an easier number." $\begin{aligned} & \frac{3}{4}+\frac{1}{4}=1 \\ & \frac{1}{8}+\frac{2}{8}=\frac{3}{8} \\ & 1+\frac{1}{8}=1 \frac{1}{8} \end{aligned}$	
Carmen's Method: "I found common denominators." $\begin{aligned} & \frac{3}{4} \times \frac{2}{2}=\frac{6}{8} \\ & +\quad \frac{3}{8} \\ & \frac{9}{8}=1 \frac{1}{8} \end{aligned}$	

Resources

A Focus on Fractions, Bringing Research to the Classroom. Marjorie M. Petit, Robert E. Laird, and Edwin L. Marsden. Routledge. 2010.

Connecting Arithmetic to Algebra: Strategies for Building Algebraic Thinking in the Elementary. Susan Jo Russell, Deborah Schifter and Virginia Bastable. Heinemann. 2011.

Developing Essential Understanding of Rational Numbers, Grades 3-5. Carne Clarke, William Fisher, Rick Marks, Sharon Ross, Rose Mary Zbiek. NCTM. 2010

Elementary and Middle School Mathematics: Teaching Developmentally (8th Edition)
(Teaching Student-Centered Mathematics. John A. Van de Walle, Karen S. Karp and Jennifer M. Bay-Williams. Pearson. 2012.

Extending Children's Mathematics: Fractions \& Decimals: Innovations In Cognitively Guided Instruction. Susan B. Empson and Linda Levi. Heinemann. 2011.

Putting Essential Understanding of Fractions into Practice in Grades 3-5. Kathryn Chval, John Lannin, Dustin Jones, Barbara Dougherty. NCTM. 2013.

