

Operations with Rational Numbers: Not Just the Rules

October 17, 2013 NCTM Regional Conference Baltimore, MD

Gloria Beswick

grbeswick@aol.com

Terry Parkey

tparkey@windstream.net

Think about your instruction or the mathematics program you use. What opportunities do the students have to use a variety of models to solve problems, understand concepts, or generalize ideas about fractions?

What models are used in the program or in the classroom?				
Area	Set			
□ Part to whole	Part to whole			
Equivalence, comparing, ordering	Equivalence, comparing, ordering			
Operations	Operations			
Number Line	Summary – In this program models			
□ Part to whole	□ are never used			
Equivalence, comparing, ordering	are sometimes used			
□ Operations	permeate instruction			
Are students provided with the opportunity to				
Answer questions in which models are given?	Use manipulatives to solve problems?			
□ Never	□ Never			
Occasionally	Occasionally			
□ Throughout	Throughout			
Use student drawn models to solve problems?	Use models to help develop concepts or generalize ideas?			
□ Never	□ Never			
Occasionally	Occasionally			
□ Throughout	□ Throughout			
Are there adjustments that I need to make to experience a variety of models? If yes, des				

Adapted from Petit, Marjorie, Laird, Robert, and Marsden, Edwin (2010). *A Focus on Fractions: Bringing Research into the Classroom*, Routledge Taylor & Francis Group, p. 25.

Name That Fraction

Locate the fraction $\frac{7}{8}$ on the number line below.

Starting at 0, can you reach $\frac{7}{8}$ in seven jumps? What size jumps did you make? List them here.

Starting at 0, can you reach $\frac{7}{8}$ in five jumps? What size jumps did you make? List them here.

Can you do this a different way? How?

Starting at 0, can you reach $\frac{7}{8}$ in four jumps? What size jumps did you make? List them here.

Can you do this a different way? How?

Starting at 0, can you reach $\frac{7}{8}$ in one jump? What size jump did you make? List it here.

Red Light–Green Light

Who is winning the *Red-light, Green-light* race? Here is the fraction of the distance covered from the start by the racers.

Mary: $\frac{3}{4}$ Harry: $\frac{1}{2}$	Larry: $\frac{5}{6}$	Han: $\frac{5}{8}$	Miguel: $\frac{5}{9}$	Angela: $\frac{2}{3}$
--	----------------------	--------------------	-----------------------	-----------------------

- 1. Predict.
 - a. Who do you think is winning?
 - b. Who can you rule out?
- 2. Explain how you decided who is winning the race:

3. Place each person in their approximate place along the race track:

Adding Fractions

Matt, Sam, and Carmen each added the numbers $\frac{3}{4}$ and $\frac{3}{8}$.

	Does the method for adding fractions make sense?
	Why or why not? Explain.
Matt's Method:	
"I halved $\frac{1}{4}$ then added."	
$1 - \frac{1}{4} = \frac{3}{4}$	
$\frac{1}{8} + \frac{1}{8} = \frac{1}{4}$	
$\frac{1}{8} + \frac{1}{8} + \frac{3}{8} = \frac{9}{8}$	
Sam's Method:	
"I broke apart the $\frac{3}{8}$ to get an easier	
number."	
$\frac{3}{4} + \frac{1}{4} = 1$	
$\frac{1}{8} + \frac{2}{8} = \frac{3}{8}$	
$1 + \frac{1}{8} = 1\frac{1}{8}$	
Carmen's Method:	
"I found common denominators."	
$\frac{3}{4} \times \frac{2}{2} = \frac{6}{8}$	
+ $\frac{3}{8}$	
$+\frac{5}{8}$	
$\frac{9}{8} = 1\frac{1}{8}$	

Resources

A Focus on Fractions, Bringing Research to the Classroom. Marjorie M. Petit, Robert E. Laird, and Edwin L. Marsden. Routledge. 2010.

Connecting Arithmetic to Algebra: Strategies for Building Algebraic Thinking in the Elementary. Susan Jo Russell, Deborah Schifter and Virginia Bastable. Heinemann. 2011.

Developing Essential Understanding of Rational Numbers, Grades 3-5. Carne Clarke, William Fisher, Rick Marks, Sharon Ross, Rose Mary Zbiek. NCTM. 2010

Elementary and Middle School Mathematics: Teaching Developmentally (8th Edition) (*Teaching Student-Centered Mathematics.* John A. Van de Walle, Karen S. Karp and Jennifer M. Bay-Williams. Pearson. 2012.

Extending Children's Mathematics: Fractions & Decimals: Innovations In Cognitively Guided Instruction. Susan B. Empson and Linda Levi. Heinemann. 2011.

Putting Essential Understanding of Fractions into Practice in Grades 3-5. Kathryn Chval, John Lannin, Dustin Jones, Barbara Dougherty. NCTM. 2013.