

Example: The Math Club Election

The Math Appreciation Society (MAS) is a student organization dedicated to an unsung but worthy cause, that of fostering the enjoyment and appreciation of mathematics among college students. The Tasmania State University chapter of MAS is holding its annual election for president There are four candidates running for president: Alisha, Boris, Carmen, and Dave (A, B, C, and D for short). Each of the 37 members of the club votes by means of a ballot indicating his or her first, second, third, and fourth choice. The 37 ballots submitted are shown on the next slide. Once the ballots are in, it's decision time. Who should be the winner of the election? Why?

Voting Theory Topics

- Preference Ballots and Preference Schedules
- The Plurality Method
- The Borda Count Method
- The Plurality-with-Elimination Method (Instant Runoff Voting)
- The Method of Pair wise Comparisons
- Fairness Criteria
- Rankings

Plurality Method

- Candidate with the most first-place votes (called the plurality candidate) wins
- Don't need each voter to rank the candidates need only the voter's first choice
- Vast majority of elections for political office in the United States are decided using the plurality method
- Many drawbacks - other than its utter simplicity, the plurality method has little else going in its favor

The Math Club: Plurality Version

| TABLE $1-1$ | Preference Schedule for the Math Club Election | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of voters | $\mathbf{1 4}$ | $\mathbf{1 0}$ | $\mathbf{8}$ | $\mathbf{4}$ | 1 |
| 1st choice | A | C | D | B | C |
| 2nd choice | B | B | C | D | D |
| 3rd choice | C | D | B | C | B |
| 4th choice | D | A | A | A | A |

and the results are clear - A wins

Borda Count Method

Each place on a ballot is assigned points
With N candidates, 1 point for last place, 2 points for second from last, and so on First-place vote is worth N points Tally points for each candidate separately
*. Candidate with highest total is winner

- Candidate is called the Borda winner

Plurality-with-Elimination Method

Round 1: Count the first-place votes for each candidate, just as you would in the plurality method. If a candidate has a majority of firstplace votes, then that candidate is the winner. Otherwise, eliminate the candidate (or candidates if there is a tie) with the fewest firstplace votes.

Plurality-with-Elimination Method

Round $3,4 \ldots$. . Repeat the process, each time eliminating one or more candidates until there is a candidate with a majority of first-place votes. That candidate is the winner of the election.

The Math Club: P-W-E Version

Round 1.

Candidate	A	B	C	D
Number of first-place votes	14	4	11	8

The Math Club: P-W-E Version

Round 2. B's 4 votes go to D, the next best candidate according to these 4 voters.

The Method of Pairwise Comparison

Every candidate is matched head-to-head against every other candidate. Each of these head-to-head matches is called a pairwise comparison. In a pairwise comparison between X and Y every vote is assigned to either X or Y, the vote going to whichever of the two candidates is listed higher on the ballot. The winner is the one with the most votes; if the two candidates split the votes equally, the pairwise comparison ends in a tie.

The Math Club: Pairwise Comparison
TABLE 1-11 Pairwise Comparison Between A and B

Number of voters	14	10	8	4	1
1st choice	A	C	D	B	C
2nd choice	B	B	C	D	D
3rd choice	C	D	B	C	B
4th choice	D	A	A	A	A

A versus $B: 14$ votes to 23 votes (B wins) B gets 1 point.

The Math Club: Pairwise Comparison

TABLE 1-12	Pairwise Comparison Between C and D					
Number of voters	14	10	8	4	1	
1st choice	A	C	D	B	C	
2nd choice	B	B	C	D	D	
3rd choice	C	D	B	C	B	
4th choice	D	A	A	A	A	

C vs D: 25 to 12 votes (C wins) C gets 1 point.

The Math Club: Pairwise Comparison

Comparing in all possible ways two candidates at a time:
A vs $B: 14$ to 23 votes (B wins) B gets 1 point A vs C: 14 to 23 votes (C wins) C gets 1 point A vs $D: 14$ to 23 votes (D wins) D gets 1 point B vs C: 18 to 19 votes (C wins) C gets 1 point B vs $D: 28$ v to 9 votes (B wins) B gets 1 point C vs $D: 25$ to 12 votes (C wins) C gets 1 point The winner of the election is Carmen!

What Could Go Wrong?

Each method has inherent potential to violate various rules of fairness.
Arrow's Impossibility Theorem states that an error free method does not exist. We therefore must pick a method that poses the least risk and is also reasonable to use. Let's look at those fairness criteria.

Fairness Criteria

-The Majority Criterion

-The Condorcet Criterion
-The Monotonicity Criterion
-The Independence-of-Irrelevant-Alternatives Criterion (IIA)

The Majority Criterion

In a democratic election between two candidates, the candidate with a majority (more than half) of the votes should be the winner.

After all, it seems clearly unfair when a candidate with a majority of the first-place votes does not win.

The Condorcet Criterion

A Condorcet candidate should always win the election.

When the candidates are compared two at a time, the Condorcet candidate beats each of the other candidates. How could it be fair to declare a different candidate as the winner?

The Monotonicity Criterion

Suppose candidate X is a winner of the election, but for one reason or another there is a new election. If the only changes in the ballots are changes in favor of candidate X (and only X), then X should win the new election.

The Violations

Plurality: Violates the Condorcet Criterion
Borda Count: Violates the Majority Criterion and the Condorcet Criterion
Plurality with Elimination: Violates the Monotonicity Criterion
Pairwise Comparison: Violates the Independence of Irrelevant Alternatives Criterion
The violations are possible, not guaranteed.

The Independence-of-IrrelevantAlternatives Criterion (IIA)

Suppose candidate X is a winner of the election, but for one reason or another there is a new election. If the only changes are that one of the other candidates withdraws or is disqualified, then X should win the new election. The flip side of this criterion is that a winner of the election should not be penalized by the introduction of irrelevant new candidates who have no chance of winning.

