Pren

COLLABORATION - WHAT IS IT?

Collaboration is

working with each other to do a task and to achieve shared goals

HOW IT WORKS

CONNECT CONTRIBUTE COLLABORATE COMMUNICATE

IT'S NOT ALWAYS EASY . . .

COLLABORATION - WHY DO IT?

Provide support to our peers
Build Better Understanding
Share the work

TOOLS FOR COLLABORATION

Technology makes it easy!

- FaceTime or Skype
- Google Docs (www.google.com)
- Web-X GoToMeeting (www.webex.com/Online-Meetings)
- Adobe Connect (www.adobe.com/Connect)
- Educreation for iPads (www.educreations.com/)
- Internet Searches
- 12 mazing tools for online collaboration
 http://www.creativebloq.com/design/online-collaboration-tools-912855

DON'T REINVENT THE WHEEL

National Council of Teachers of Mathematics Illuminations

- http://illuminations.nctm.org/

Ohio Resource Center

- http://www.ohiorc.org/
- http://www.ohiorc.org/standards/commoncore/mathematics/

(x) ILLUMINATIONS

- Resources for Teaching Math
lessent tateractives

${ }^{1}$ What's Next?

In toos lesson, students moke patterns with objects, read pattems and find patterns in the ensoronment. They should be encouraged to claseify pattens by type (le AAB, ABC). They continue la arning about pattems by extending a given patten, identifying missing elements in a pattem, and recording a paitem

thatinectional D明	Objectives * Standards	Bateriais	As sesments 4 Exteasions	Questions Reflection	Related Resoarces	Priat AB

Begin the lesson by displaying a prece of fabric or wallpaper weth a pattem. Ask the students to describe the pattem in words (for example, red, green, blue, red, green, blue) and then to recard the patlern using crayans Then ask the students to look around the room to see whal other patiems they can find. You might wast to suggest that they look at classmate's clothing Next, ask the students what patterns they found at their house Ask studenis to compare one another's patteons Proude them wich the appropriate pattern names, such as ABA and AAB)

LiearnOhio

ORC Project

Resources for Early Childhcod (REC)

Lterscy K-5
Adolescent Literacy (AdUT)
orc On e-pub

FYI

Theme of newest in Perspective is the writing process Read feature articles by Penny Kittle and Robin Holland in the latest issue of ORC's online literacy journal, In Perspective. The issue, "Ohio s New-m (more)

Visit ORC at the Ohio Early Care Reducation

 Conference, April 10-12Come by and say his to ORC's early childhood specialist Nancy Brannon at the Greater Columbus Cornvention Center in downtown Columbus. ORC is sharing Booth 415 with. (more)

[^0]Browse by Standards
Mathematics
Common Core Standards Ohto Standards (2001)
NCTH National Standards

Science

Ohio Standards (2010) Ohie Standards (2002) NRC National Standards

English Language Arts / Reading
Common Core Standards Ohio Standards (2001)

STANDARDS FOR MATHEMATICAL PRACTICE

CCSS.MATH.PRACTICE.MP1 Make sense of problems and persevere in solving them.

CCSS.MATH.PRACTICE.MP2 Reason abstractly and quantitatively.
CCSS.MATH.PRACTICE.MP3 Construct viable arguments and critique the reasoning of others.
CCSS.MATH.PRACTICE.MP4 Model with mathematics.
CCSS.MATH.PRACTICE.MP5 Use appropriate tools strategically.
CCSS.MATH.PRACTICE.MP6 Attend to precision.
CCSS.MATH.PRACTICE.MP7 Look for and make use of structure.
CCSS.MATH.PRACTICE.MP8 Look for and express regularity in repeated reasoning.

ohiow̌c.org

Irmproving Learning in Ohio

Search menserces

bpic or keyword
So us Searat I Receri i Mopix:

OLC Featores

Mathenation fidscators
scence Educetery
Crgiah Languape Ats Educator:

Scoial shufies Elderatons
dearncien

orc Projets

Rescarces for Cariy Cruldhoer (REC)

Ateracy K -5
Adalement Levecy (AdUT)
OFCOO Dos

- ar onc collfinan Aso orpraims siart
sc- Petars to Ceamon Core Marhematica Slanderda

Standards for Mathematical Practice

CCSS. Math.Practice.MP1 Make sense of problems and persevere in solving them.
Mathematically proficient students stant by explaing to themselves the meanerg of a probiem and lookeng for entry poits to its solution. They aralyze givens, constrants, relationstigs, and goals. They make conjecbures about the form and meaning of the solution and plan a solution pattavay rather than semply furping into a solution attempt. They consider analogous protiomes, and try special cases and siopler forms of the original problem in order to gan ensijht into its solution. They monstor and evaluate thei propress and change course if necessary. Older students maght, depending on the context of the problem, tranaform algebrac expressions of change the veewing window on their graphing calculator to get the information they need. Mathernatically proficient students can explim correspondences between equationes, verbal descriptions, tabies, and graphs of draw diagrams of inportant features and relationships. graph data, and search for regularity of trends Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check thei answers to problems using a different method, and they continually ask themselves, "Does thes make sense? ${ }^{2}$ They can understand the approaches of others to solving complex problems and identily correspondences betveen different approaches. (ORC Rascurces)

CCSS Bad. Practice.MP2 Reason abstractly and quasutatively.
Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary ablities to bear on problems involving quantitative rebationchipe: the abilty to decontextualize-to abstract a given situation and represent it symbolically and marmpulate the representing symbols as of they have a bife of ther own, without necessarly attending to ther referents-and the ability to contextualize, to pause as needed during the manipulation process on order to probe into the referents for the symbols involved. Quantitative reasoning entais habits of creating a coherent representabon of the problem at hand; considering the urits imvolved; attending to the meaning of quantities, not just how to compute them; and knowng and flexbly using

Search Resources

topic or keyword

(3)

So to Beart I Recenc / Popular

ORC Features

Nathernatics Educators
Science Educators
English Language Arts Educators

Social Studies Educators
ilearnOhio

ORC Projects

Resources for Early Childhood (REC)

Lteracy K-5
Adolescent Literacy (AdLT)
ORC•On e-pub

Ald Organize, Share

Math Common Core Standards

Results 1 - 10 of 266:
 Return to Standard
 CCSS.Math Practice.MP1 Make sense of problems and persevere in solving them.
 View Results: $1-10 \left\lvert\, \frac{11-20|21-30| 31-40|41-50| 51-60|61-70| 71-80|81-90| 21-100|101-110| 111-120 \mid}{|30|}\right.$ $\underline{231-240}|\underline{241-250}| \underline{251-260} \mid$ 251-265

Supreme Court Welcome
new furl picono AD AOD TO MY COLLECTION

RESOURCE INFORMATION
RESOURCE URL: http://illuminations,nctm org/LessonDetail.aspx?ID=U/6B
RESOURCE TYPE: Lessons
DISCIPLINE: Mathematics
GRADES: Grade 6
PROFESSIONAL COMMENTARY: This two-lesson unit allows students to investigate the triangular numbers in an interesting, real-world context, the Supreme Court. Beginning with the classic handshake problem, students generate geometric and algebraic representations for the patterns they encounter and conclude with a formula for the nth triangular number....

-
 Math Common Core Standards

to Search / Recent / Popular

RC Features

thematics Educators
ence Educators
glish Language Arts
ucators
cial Studies Educators
amohio

C Projects
sources for Early Childhood
EC)
eracy K-5
olescent Lteracy (AdLIT)
con e-pub

```
Results 1-10 of 329:
Return
CCSS.Math.Practice.MP2 Reason abstractly and quantitatively.
View Results: \(1-10|11-20| 21-30\left|\frac{31-40 \mid 41-50}{}\right| 51-60|61-70| 71-80|81-90| 21-100|101-110|\)
```



``` \(\underline{\mathbf{2 3 1 - 2 4 0}}|\underline{241-250}| \underline{251-260}|\underline{261-270}| \underline{271-290}|\underline{281-290}| \underline{291-300}|\underline{301-310}| \underline{311-320} \mid \underline{321-329}\)
```

1 Walk the Plank

```
VIEW FULL RECORD O ADD TO MY COLLECTION
```


RESOURCE INFORMATION

RESOURCE URL: http://illuminations.nctm.org/LessonDetail. aspx?id=L682
RESOURCE TYPE: Lessons
DISCIPLINE: Mathematics
GRADES: Grade 8
PROFESSIONAL COMMENTARY: When one end of a wooden board is placed on scale and the other end is propped on a textbook, students can "walk the plan the weight measurement as their distance from the scale changes. The results unexpected - the relationship between the weight and distance is linear, and

Seach Reveurces	
topre or keyword	0
0	

ORC Features

Mathematics Lducators
Solene eflucators
inplich ianguage arts educators

Socos Suluties Educators
Aleamohio

ORC Projects

Resounces for Early Childhood (REC)

Literacy K-5
Adolescent Literacy (AdiUT)
OSC-On epub

AM OAC COLIFCTON
ndi Organizn Share

Math Common Core Standards

Results $1-10$ of 168 :

Return to standars

 CCS5.Math. Practice.MP3 Construct viable arguments and critique the reasoning of others.

1

```
Detective Siope - An Investigation of the Slopes of Lines and Shapes
```



```
RESOURCE INFOMMATION.
RESOURCE URL: http://www, nea, goulacademia/ files/collected learning/high schoo...
RESOURCE TYPE: Lessons
DISCIPINE: Mathematics
GRADES: Grades 8-12
PROFESSIONAL COMMENTARY This learning unit is designed for students to investigate the defirition of slope and the slopes of parallel and perpendicular lines. Students are introduced to special parallelograms by applying the concept of slope using Geometer's Sketchpad © ....
```

MORE...
2 Circle Packing 3: Circle Paciong and Curvature
vire rul aecoen of nop po ar courction

RESOURCE INFORMATION

RESOURCE URL: http://tluminations, nctm ero/LessonDetail. anpx?ID $=$ L692
RESOURCE TYPE: Lessons

DISCIPLINE: Mathematics

GRADES: Grades 9-12
PROFESSIONAL COMMENTARY An important idea in advanced mathematics is curvature, the
topic or keyword
Ce te Search / Racent / Pusular

ORC Features

Mathematice Educators
Science Educators
Engluh Language Arts Educators

Social Studes Educators dearnOhy

ORC Projects

Resources for Early Chidhood (REC)

Lieracy K 5
Adolescent Lteracy (AdLIT)
ORCDOn e-pub

Add Organirs Shate

Math Common Core Standards

Results 1 - 10 of 119

CCSS.Math.Practice MP4 Model with mathematics.
View Results: 1-10 $\left.|\underline{11-20}| \frac{21-30}{}|\underline{31-40}| \underline{41-50}|\underline{5 x-60}| \underline{62-70 \mid} \right\rvert\,$ 71-80 $|81-90| 21-100|101-110| 111-119$
1

MORE...

Power of Points

RE SOURCE INFORMATION

Return to Standard

```
At The Circus
VEWFULI RECORD DADDTOMY COULCTIOS

\section*{RESOURCE INFORMATION}
```

RESOURCE URL: http://www.nsa gov/academia/ files/collected leaming/high schoo..
RESOURCE TYPE: Lessons
DISCIPLINE: Mathematics
GRADES: Grades 9-12
PROFESSIONAL COMMENTARY: Students use algebra or geometry software to discover that the height at which guy wires supporting two vertical poles cross does not depend on how far apart the poles are. This counterintuitive result can lead to conjecturing and testing hypotheses as to what factors determine the height at which the wires cross...
At The Circus.
RESOURCE INFORHATION
RESOURCE URL: http://www.nsa.gov/academia/ files/collected leaming/high schoo...
\#
T

```
fopic or keyword
- Math Common Core Standards


\section*{OAC Features}

Mathematics Elucators
Sorence Educators
English Language Arts
Edvcators
Social Studies Educators
dearnotho

\section*{ORC Projects}

Resources for Early Chidhood (REC)

Lereracy K-5
Adolescent Lterecy (AdMT)
oBCOn e-pub Results 1-10 of 82:
CCSS Math.Practice.MPS Use appropriate tools strategically.
View Results: \(1-10|\underline{11-20}| \frac{21-30}{}\left|\frac{31-40}{}\right| \underline{41-50}|\underline{51-60}| \underline{51-70}|\underline{21-80}| 31-82\)

1
Walk the Plank
VIW FULRECORD OF NDDTO WY COUECTION
RESOURCE INFORMATION
RESOURCE URL: http://iluminationg.nctm org/LessonDerail aspxad=L692
PESOURCE TYPE: Lessons
DISCIPLINE: Mathematics
GRADES: Grade 8 the weight measurement as their distance from the scale changes. The results are

\section*{MORE...}

2 Impact of a Superstar

Return to Standard

ORC 7882

PROFESSIONAL COMMENTARY: When one end of a wooden board is placed on a bathroom scale and the other end is propped on a textbook, students can "walk the plank" and record unexpected- the relationship between the weight and distance is linear, and all lines have...

VEW FUL Recom ar ND TO MT COULCTION
ORC \(=7718\)

\section*{RESOURCE INFORMATION}


\section*{Search Resources \\ \begin{tabular}{|l|}
\hline topic or keyword \\
De we bourt i hecans i Borvier \\
\hline
\end{tabular}}

\section*{Math Common Core Standards}

\section*{ORC Features}

Mathematics Educators
Sovence Efiacetors
Eng ish Linguage Arts
Educatore
Social Studies Educators
flearnohio
Results 1 - 10 of 121:
CCSS.Math.Practice MP6 Attend to precision.
Return to standard
 121-121

\section*{1 Pinwheel}
vatw ful accond at ADD To wy collechon

\section*{RESOURCE ITMTORHATION}

RESOURCE URL: hetp: U/fummations.nctm, or \(/\) /LessonDetail aspxPid \(=1608\)
RESOURCE TYPE: Lessons
dISCIPLINE Mathematics
GRADES: Grades 6-12
PROFESSIONAL COMMENTARY: Students create parallelograms from square sheets of paper and connect them to form an octagon. During the construction, students analyze angle measures, segment lengths, and areas in terms of the original square....

\section*{MORE...}

2 Check That Digit
VFWFUL RECORD DAD AOD TO MY COLLECTION

\section*{SCIENCE EDUCATGRS}

ENGLISH LANGUAGE ARTS LDJCATOES
SOCIAL STUDIES EDEMAKS
\begin{tabular}{|l|}
\hline Search Rescources \\
\hline topic or keyword \\
co wo sench / Reckert / Popular \\
\hline
\end{tabular}

\section*{ORC Featares}

Marhemutios Elucators

\section*{Math Common Core Standards}

\section*{Results 1-10 of 114:}

Return to standard
CCSS.Math.Practice-MP7 Look for and make use of structure.


\section*{Scuence Educators}

English Language Arts
Educator:s
Socal Studies Educators
ilearnOho

\section*{ORC Projects}

Resources for Early Childhood (REC)

Literaby K-5
Adolescent Lteracy (AdLIT)
onc On e-pub


1 Twealoing a Trigonometric Function .. An Exploratory Lesson


\section*{RESOURCE INFORMATION}

RESOURCE URL: http://www.nsa.gov/academia/ files/collected leaming/high schoo..
RESOURCE TYPE: Lessons
DISCIPUNE Mathematics
```

GRADES: Grades 9-12

```

PROFESSIONAL COMMENTARY: This lesson demonstrates the various translations of \(y=A \sin\) \(B(x+C)+D\) and \(y=A \cos B(x+C)+D\) based upon changes in \(A, B, C\), and \(D\). Graphing calculator overlay graphs make it easy for students to detect, understand, and predict the relationship between changes in parameters and..

MORE...

Regular Pentagons, "Star Polygons," and the Golden Ratio VEWHULEEORO A ADDTO UY COLLCTION

\section*{RESOURCE INFORMATION}

RESOURCE URL: httpi//www.nsa.gov/academia/ files/collected leaming/high schocu.

Search Rescurces
topac or keyword

\section*{Math Common Core Standards}
(The na Searci I Raciant / Potishar

ORC Features
Mathemalics Educators
Science Educators
tinglah Language Ats ESUcators

Sociel Studier Educators
iloamoho

\section*{OnC Projects}

Resources for Early Childhood (REC)

Literocy K. 5
Adolescent Letracy (AdUT)
oric on e-pub


Results 1-10 of 91 :
CCSS.Math.Practice.MPB Look for and express regulanity in repeated reasoning.
View Results: \(1-10|11-20| 21-30 \left\lvert\, \frac{31-40|41-50| 51-60|61-70| 21-30|~ 81-90| ~ 21-91}{|c|}\right.\)
1 What About Modians?
FINFHLALCORD AF ADD TO MT COUECTIOS
ORC F 8881
BESOURCE INFORMATION
RESOURCE URL: bttp://www nsa gov/academia/ ries/collected leaming/high schoo.
RESOURCE TYPE: Lessons
DISCIPUNE: Mathematics
GRADES: Grades 9-12
PROFESSIONAL COMMENTARY: Students draw a triangle and the three medians of the triangle using Geometer's Sketchpad(1). The students identify and measure the line segments between the vertices of the triangle and the centroid and between the centroid and the midpoints of the opposite sides using dynamic geometry software...

\section*{MORE}

2 Regular Pentagons, "Star Polygons," and the Golden Ratio VIW FUL ECCORD O ADD TO UT COLLECTION

\section*{RESOURCE INFORHATION}

RESOURCE URL: httril/www nsa.gov/academa/ files/collected learning/high schoon=

\title{
WHAT STANDARD(S) FOR MATHEMATICAL PRACTICE DO YOU SEE IN THE FOLLOWING DISCUSSION?
}

\section*{SOLVING MATHEMATICAL TASKS}

Solve the following mathematical task in as many ways as you can. Consider other approaches students might use to solve it. Identify misconceptions that you would anticipate as students work on this task. Make note of any challenges you experience as you solve the task.

\section*{The Vegetable Garden}

The students in Mr. Landon's class are designing and planting a vegetable garden as a community service project. They have 32 feet of fencing that has been donated to the class for this project. They have decided to use the fencing to make a rectangular garden.

If the students want as much space as possible to plant the vegetables, how long will each of the sides of the garden need to be?
The class receives additional fencing from a second donor. They now have 64 feet of fencing in total-double the amount of the original fencing. Determine the largest rectangle possible to allow for the maximum space to plant the vegetables. How does the area of this new garden compare to the original design?

\begin{tabular}{|c|c|c|c|}
\hline 8 ft . & \begin{tabular}{l}
\[
64 \text { sq. }
\] \\
ft .
\end{tabular} & & Original garden: \(8 \mathrm{ft} \times 8 \mathrm{ft}=\) perimeter 32 ft . Area 64 sq. ft. \\
\hline & 100\% & & Double dimension garden: \(16 \mathrm{ft} \times 16 \mathrm{ft}=\) Perimeter 64 ft . Area 256 sq . ft. \\
\hline 8 ft . & & & The diagram makes it easy to see that first garden could be copied and pasted three more times to fill the second garden. This would be 300 "more" percent than we had originally. This is a 300\% \\
\hline \multirow[t]{3}{*}{} & 8 ft . & 8 ft . & increase. \\
\hline & & & If students first learn to model percent using 100 grids, it makes this easier to connect with percent. It helps them to see the original amount as 100\%. \\
\hline & & & This model could also represent that the larger garden is \(400 \%\) or 4 times the original garden. \\
\hline
\end{tabular}

\footnotetext{
Slide contribution:
Jacqueline Miller, MATH6561
Spring Semester 2014
Walden University
}

\section*{FROM ANOTHER STUDENT . . .}

The teacher knowing what misconceptions the students may have is a good idea. I like to know in advance how the students maybe thinking so that I can address these issues while I am teaching the lesson. Most of the time when I bring the misconceptions to my students' attention they don't make the mistakes. I love doing hands on activities in the classroom, this allows the students to have something concrete to refer back too. When students are given an assignment they must know how to use critical thinking to address everything that the problem asks them. I use a method call unpacking. With unpacking the students read the question and figure out what they are asked to do and make sure the answer covers everything. For instance we were asked to: Post an explanation of at least two different strategies for solving the mathematical task. Include the mathematical thinking you used as you applied your strategies. Identify misconceptions that may occur while students work on this task. If you had difficulties in solving the task, indicate the challenges you had in solving the task. You would make a chart with two sides the first is DO and the second is What.

For instance we were asked to: Post an explanation of at least two different strategies for solving the mathematical task. Include the mathematical thinking you used as you applied your strategies. Identify misconceptions that may occur while students work on this task. If you had difficulties in solving the task, indicate the challenges you had in solving the task. You would make a chart with two sides the first is DO and the second is What.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Do (Action) } & \multicolumn{1}{c|}{ What (Response) } \\
\hline Post & \begin{tabular}{l} 
Two different strategies for solving the \\
math task
\end{tabular} \\
\hline Include & Math thinking used as u applied strategies \\
\hline Identify & Misconceptions students may have \\
\hline Identify & Difficulties you had \\
\hline Indicate & Challenges you had \\
\hline
\end{tabular}

\footnotetext{
Slide Contribution
Shanona Merrell, MATH6561
Spring Semester 2014
Walden University
}

\section*{FROM ANOTHER STUDENT . . .}

The actual definition of a rectangle is that it is a quadrilateral with two sets of parallel lines and 4 right angles. Therefore a square is a rectangle.

This is something my fifth graders always find confusing, but we draw out examples while creating definitions. Here is an example of what we draw:


Slide contribition:
Jillian Engelhardt, MATH6561
Spring Semester 2014
Walden University

\section*{DR. NAN TO STUDENT}

You might wish to create a table to organize the possibilities. I have created a table for you with two sets of numbers. How many other sets of integer numbers exist that can be used to make a rectangle with a perimeter of 32 feet
\begin{tabular}{|l|l|l|}
\hline Length & Width & Area (length times width) \\
\hline 1 foot & 15 feet & 1 foot \(\times 15\) feet \(=32\) sq. feet \\
\hline 2 feet & 14 feet & 2 feet \(\times 14\) feet \(=28\) sq. feet \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\section*{STUDENT RESPONSES}

\author{
Dr. Nan!
}

Thank you for this suggestion. Creating a table is an excellent way to not only organize information that is important to the task at hand, but it allows to student to hone in on what is being asked of them through the implementation of the task.

Dr. Nan,
Wow that is a good way to solve a problem. Creating a table does make it easier for the students to find the answer. I am going to use method with one of my lesson to see how my students like it!

Sher to Dr. Nan and Terrance,
As I was reading your post (Terrance) and Dr. Nan's question... it gave me an "Aha" moment :). Area is in square units, so of course the \(n\) times that you would multiply the perimeter, the area should be \(n^{2}\) greater than the original area. Oh gosh!! :) So I did a table because I really need to visualize it... so here it is.
Thank you Terrance and Dr. Nan :)

\section*{WHAT I HAVE DONE . . .}
- Created an Environment that encourages sharing
- Created vehicles for sharing lesson plans and electronic resources
- Students share by
- Content
- Grade level

\section*{RESOURCES FOR TEACHERS}

\section*{www.teachingchannel.org}
- Teaching Channel is a video showcase -- on the Internet and TV -- of innovative and effective teaching practices in America's schools.
- Lesson Ideas: Mush Forward with the Iditarod!
- https://www.teachingchannel.org/blog/2014/02/20/iditarod-lesson-ideas/

\section*{http://www.realworldmath.orgl}
- Real World Math is a collection of free math activities for Google Earth designed for students and educators. Mathematics is much more than a set of problems in a textbook. In the virtual world of Google Earth, concepts and challenges can be presented in a meaningful way that portray the usefulness of the ideas.

\section*{MORE RESOURCES FOR TEACHERS}

\section*{www.youtube.com}
- I Can Count To 100
- http://www.youtube.com/watch?v=W0o-uizBWDM
- Whatcha Gonna Do Count By 2's 5's and 10's
- http://www.youtube.com/watch?v=vq3cDj3Uj3I
- 3D shape song by Harry Kindergarten
- https://www.youtube.com/watch?v=2cg-Uc556-Q
- Perimeter Song
- http://www.youtube.com/watch?v=KwXBMGdSWmI
- Quadratic Formula - the Musical
- https://www.youtube.com/watch?v=1oSc-TpQqQI


\section*{MORE RESOURCES FOR TEACHERS}

\section*{FaceBook Pages}
- Teacher Resources
- https://www.facebook.com/search/keyword/?q=teacher\%20resources
- Elementary Teacher Resources
- https://www.facebook.com/ElementaryTeacherResources
- Teacher-Teacher Resources
- https://www.facebook.com/TeacherTeacherResources
- Teacher Created Resources
- https://www.facebook.com/teachercreatedresources

\section*{MORE RESOURCES FOR TEACHERS}
- Teacher Tube
- http://www.teachertube.com
- StudyJams
- http://studyjams.scholastic.com/studyjams/jams/math/index.htm
- Sheppards Software
- http://www.sheppardsoftware.com/math.htm
- Cool Math - An amusement park of math and more...
- http://www.coolmath.com/


\section*{MORE RESOURCES FOR TEACHERS}
- TeacherpayTeacher.com

Teachers Pay Teachers is the world's first and largest open marketplace for educators to buy, sell, and share their original resources. TpT helps teachers to teach at their best and provides a community where teachers succeed.

\section*{PRICES}

Free
Under \$5
\(\$ 10\) and up


\section*{ONE LAST RESOURCE...}

TEACHING FRACTIONS


\section*{WHAT ARE YOU DOING?}

\section*{WHAT CAN YOU DO?}


\title{
CONTACT INFORMATION NANCY SATTLER PRESIDENT, AMATYC
}

\section*{NSATTLER@TERRA.EDU NANCYJOAN.SATTLER@WALDENU.EDU}
```


[^0]: Watch broadcasts of the Digital Learning Day panel discussion
 Be sure to watch the Digital Learning Day panel discussion "Perspectires on Digital Learning in Ohio," which was onginally

