Can you make all the prime numbers less than 100 with 6 fours and these symbols?

$$
\begin{aligned}
& 4444444 \\
& + \\
& \hline
\end{aligned}
$$

$2=$
3 =
$5=$
7 =
$11=$
$13=$
$37=$
$31=$
$59=$
$83=$
$61=$
$89=$
$97=$

## Focusing and Connecting to What Matters Most <br> Jan Scott, Ph.D. Regional Director of Math Partnerships, Scholastic Inc.





## MOC54 MEADNS



Mach Curiculam Guide Algebra Readiness

2012-13


"Algebra class will be important to you later in life because there's going to be a test six weeks from now."

"Why is it important for today's kids to learn algebra? Because $I$ had to learn this junk in school and now it's your turn, that's why!"

## The importance of algebra . . .

How important is algebra to a student's chance of attending college?

Students who take a year of algebra and follow with a year of geometry nearly DOUBLE their chances of going to college -- by doing that alone!
Students who complete Algebra II are more than twice as likely to GRADUATE from college.



## Focusing Attention within Number and Operations

## Operations and Algebraic Thinking

Expressions and Equations

Number \& Operations Base 10

## Numbers \&

 Operations Fractions
## Progressions to Algebra

| K | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Know number names and the count sequence <br> count to tell the number of objects | Represent and solve problems involving addition and subtraction <br> Understand and |  | Represent \& solve problems involving multiplication and division <br> Understand properties of multiplication and the relationship | Use the four operations with whole numbers to solve problems <br> Generalize place value | Understand the place value system <br> Perform operations with multi-digit whole numbers and | Apply and extend previous understandings of <br> multiplication and division to divide fractions by fractions | Apply and extend previous <br> understandine of | Work with radical and integer |
| Compare numbers <br> Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from <br> Work with numbers 11-19 to gain foundations for place value | apply properties of operations and the relationship between addition and subtraction <br> Add and subtract within 20 | Represent and solve problems involving addition and subtraction <br> Add and subtract within 20 | between multiplication and division <br> Multiply \& divide within 100 <br> Solve problems involving the four | understanding for multi-digit whole numbers <br> Use place value understanding and properties of operations to | decimals to hundredths <br> Use equivalent fractions as a strategy to add and subtract fractions | Apply and extend previous understandings of numbers to the system of rational numbers <br> Understand ratio | operations with fractions to add, subtract, multiply, and divide rational numbers <br> Analyze proportional | exponents <br> Understand the connections between proportional relationships, lines, and linear |
|  | Work with addition and | Understand place value | operations, and identify \& explain patterns in | perform multidigit arithmetic <br> Extend | Apply and extend previous | concepts and use ratio reasoning to solve problems | relationship and use them to solve real-world and mathematical | equations** Analyze and solve |
|  | subtraction equations Extend the counting sequence | Use place value understanding and properties of operations to add and subtract | arithmetic <br> Develop understanding of fractions as numbers | understanding of fraction equivalence and ordering | multiplication and division to multiply and divide fractions | Apply and extend previous understandings of arithmetic to algebraic | problems <br> Use properties of operations to generate | linear equations and pairs of simultaneous linear equations |
|  | Understand place value | Measure and estimate lengths in standard units | Solve problems involving | Build fractions <br> from unit <br> fractions by | Geometric measurement: understand | expressions <br> Reason about and | equivalent expressions | Define, evaluate, and compare functions |
|  | Use place value understanding and properties of operations to add and subtract | Relate addition and subtraction to length | measurement and estimation of intervals of time, liquid volumes, \& masses of objects | applying and extending previous understandings of operations | concepts of volume and relate volume to multiplication and to addition | solve one-variable equations and inequalities <br> Represent and | Solve real-life and mathematical problems using numerical and algebraic <br> expressions and | Use functions to model relationships between quantities |
|  | Measure lengths indirectly and by iterating length units |  | Geometric measurement: understand concepts of area and relate area to multiplication and to addition | Understand decimal notation for fractions, and compare decimal fractions | Graph points in the coordinate plane to solve real-world and mathematical problems* | quantitative <br> relationships <br> between <br> dependent and independent variables | equations |  |

## Focusing and Connecting to What Matters Most <br> - Connecting Multiplication, Squares and Square Roots

$7^{\text {th }}$ Grade: Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=$ P . . . Evaluate square roots of small perfect squares and cube roots of small perfect cubes. $8^{\text {th }}$ Grade: Know that there are numbers that are not rational, and approximate them by rational numbers.

Use rational approximations of irrational numbers to compare the size of irrational numbers

## Roots



Many students actually look forward to Mr. Atwadder's math tests.

## Roots

- Comes from the Latin word RADIX meaning root
- 1557 in The Whetstone of Witte by Robert Recorde
- "Thei onely haue rootes, whiche bee made by many multiplications of some one number by itself"
- Symbol traceable to Christoff Rudolff Die Coss in 1525
- Used because it resembled a small r
- The vinculum was added later


## Focus on what matter most

$1 \times 5$
$2 \times 5$
$3 \times 5$
$4 \times 5$
$5 \times 5$


## Finding a square root

## Connecting multiplication to higher math

 concepts...
## $\sqrt{58}$



## Focusing and Connecting to What Matters Most

$3^{\text {rd }}$ Grade: Compare two fractions with the same numerator or the same denominator by reasoning about their size.
$4^{\text {th }}$ Grade: Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2.


## Fraction Riddle

## I'm a fraction with a value less

 than $1 / 2$. Both my numerator and denominator are one-digit primes. What three fractions could I be?
## Fractions

- Latin frangere (to break), often called "broken numbers
- Fibonacci (1202) Liber abaci generally used fractio and first used the fraction bar
- Robert Recorde in Ground of Artes (1575) "A Fraction in deede is a broken number"
- Chaucer (~1400) - The earliest recorded sense of the word is "an aliquot part of a unit, a fraction or subdivision"


## Proper and Improper Fractions

 and Mixed Number- IMPROPER: Robert Recorde (1542) "An Improper Fraction...that is to saye, a fraction in forme, which in dede is greater than a Unit."
- PROPER: Samuel Jeake Arithmetic (1701) "Proper Fractions always have the Numerator less than the Denominator, for then the parts signified are less than a Unit . . ."
- MIXED NUMBER by Robert Recorde (1542) "mixt numbers (that is whole numbers with fractions)"


## Let's do some more math . . .

## Which is greater

$$
\frac{3}{8} \text { or } \frac{5}{6}
$$

## Let's see how Zakari did it . . .



## Foundations for Computing: Comparing Fractions

Strategy 1: Compare unit fractions

$$
\frac{1}{8}<\frac{1}{2}
$$



Strategy 2: Compare fractions with common numerators

$$
\frac{3}{12}<\frac{3}{4}
$$



Strategy 3: Compare fractions with common denominators

$$
\frac{1}{4}<\frac{2}{4}
$$



## Foundations for Computing: Comparing Fractions

Strategy 4:
Compare fractions one unit fraction from 1

$$
\frac{7}{8}>\frac{5}{6}
$$



Strategy 5:
Compare fractions to $1 / 2$
$\frac{3}{8}>\frac{5}{16}$


## Foundations for Computing: Comparing Fractions

Strategy 6:
Change fractions to equivalent fractions

$$
\frac{3}{4}>\frac{5}{6}
$$

| $\frac{1}{6}$ |  | $\frac{1}{6}$ |  | $\frac{1}{6}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{12}$ |
|  | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{1}{12}$ |  |  |  |


| $\frac{1}{4}$ |  |  | $\frac{1}{4}$ |  |  | $\frac{1}{4}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{12}$ |

## Foundations for Computing: Fraction Families on a Multiplication Chart



# Focusing and Connecting to What Matters Most <br> - Connecting operations of whole numbers to fractions 

$5^{\text {th }}$ Grade: Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators.
$6^{\text {th }} \& 7^{\text {th }}$ Grade: Apply and extend previous understandings

## Foundations for Computing: Applying the Big Ideas

- 10 is the organizer of our number system
- Numbers can be composed and decomposed

$$
\begin{aligned}
& 8+6= \\
& 8+2+4 \\
& 10+2=14
\end{aligned}
$$

## Foundations for Computing: Applying the Big Ideas to Fractions

- 1 is the organizer of fractions
- Fractions can be composed and decomposed



## Focusing and Connecting to What Matters Most <br> - Connecting operations of whole numbers to fractions

$4^{\text {th }}$ Grade: Apply and extend previous understandings of multiplication to multiply a fraction by a whole number. . .
Understand a multiple of $\mathrm{a} / \mathrm{b}$ as a multiple of $1 / \mathrm{b}$, and use this understanding to multiply a fraction by a whole number.

## Focusing and Connecting to What Matters Most <br> - Connecting operations of whole numbers to fractions

5th Grade: Interpret the product $(a / b) \times q$ as a parts of a partition of $q$ into $b$ equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$.
$6^{\text {th }} \& 7^{\text {th }}$ Grade: Apply and extend previous understandings

## Foundational Progressions



## Focus on what matter most

$1 \times 5$
$2 \times 5$
$3 \times 5$
$4 \times 5$
$5 \times 5$


Connecting multiplication to higher math concepts...


$$
\begin{aligned}
24 \times \frac{3}{4} & \\
& =\left(24 \times 3 \times \frac{1}{4}\right. \\
& =\frac{72 \times \frac{1}{4}}{} \\
& =\frac{72}{4}=18
\end{aligned}
$$

# Focusing and Connecting to What Matters Most <br> - Connecting operations of whole numbers to fractions 

5th Grade: Interpret division of a unit fraction by a non-zero whole number, and compute such quotients . . . Interpret division of a whole number by a unit fraction, and compute such quotients.
$6^{\text {th }} 87^{\text {th }}$ Grade: Apply and extend previous understandings

## Dividing Fractions

Imagine you are beginning to teach students division with fractions.

What would you do to introduce this concept to students?

How would you present the following problem?

$$
1 \frac{3}{4} \div \frac{1}{2}
$$

## Introducing Division of Fractions

> What is the common phrase we hear teachers say when teaching students to divide fractions? "Ours is not to reason why, simply invert and multiply!"

## What we should be saying is "dividing by a number is equivalent to multiplying by its reciprocal."

Ma, L. (2010). Knowing and Teaching Elementary Mathematics: Teachers' Understanding of Fundamental Mathematics in China and the United States (Studies in Mathematical Thinking and Learning Series) (2nd ed.).
Routledge.

## Introducing Division of Fractions

Dividing by 2 is the same as multiplying by $1 / 2$, therefore dividing by $1 / 2$ is the same as multiplying by 2 .

| INPUT | EQUATIONS | OUTPUT |
| :---: | :---: | :---: |
| 1 |  | $\frac{1}{2}$ |
| $\frac{1}{2}$ |  | $\frac{1}{4}$ |
| $\frac{1}{4}$ |  | $\frac{1}{8}$ |
| $\frac{1}{5}$ |  | $\frac{1}{10}$ |
| 16 |  | 8 |

## Introducing Division of Fractions

How many different ways can we solve the problem $1 \frac{3}{4} \div \frac{1}{2}$ ?

## Measurement Model

"How many $1 / 2$ s in $13 / 4$ ?" (e.g., cups, graham crackers, piece of wood)


There are $3 \frac{1}{2}$ pieces.

## Measurement Model




## Focusing and Connecting to What Matters Most - Connecting number lines to ratios

$6^{\text {th }}$ Grade: Understand the concept of a unit rate $a / b$ associated with a ratio $a: b$ with $b \neq$ 0 , and use rate language in the context of a ratio relationship.
$7^{\text {th }}$ Grade: Compute unit rates associated with ratios of fractions, including ratios of tengths, areas and other quantities measured in like or different units.

## Solving Problems with a Double Number Line: Rates

On a bicycle you can travel 20 miles in 4 hours. What are the unit rates in this situation?
Miles
0


Hours

## Solving Problems with a Double Number Line: Percents

A part is a percent of a whole. If the whole of 240 is $100 \%$, then the part shown for 24 students is $10 \%$, for 120 students is $50 \%$. What percent is represented by 96 students

Number of Students


## Solving Problems with a Double Number Line: Percents

When the entire 6th grade of 240 students was polled, results showed that 96 students were dissatisfied with the music at a dance. What percentage of the 6 th grade does this represent?

Number of Students


# Solving Problems with a Double Number Line: Percents 

Andrew was given an allowance of $\$ 20$. He used $75 \%$ of his allowance to go to the movies. How much money was spent at the movies?


## When not knowing math can cost you \$15,000 . . .



## Scholastic supports . . .



Math Solutions.

