CORE WITHIN THE CORE: ALGEBRA READINESS FOR ALL

Jan Scott, Ph.D., Scholastic Director of Math Partnerships, South Region jscott@scholastic.com

THE IMPORTANCE OF ALGEBRA

How important is algebra to a student's chance of attending college

Students who take a year of algebra and follow with a year of geometry nearly DOUBLE their chances of going to college -- by doing that alone! Students who complete Algebra II are more than twice as likely to GRADUATE from college.

CONNECTING MULTIPLICATION, SQUARES, AND SQUARE ROOTS

- 3RD GRADE: SQUARES UP TO 20
- 4TH GRADE: AREA OF SQUARES AND RECTANGLES
- 5TH GRADE: AREA OF SQUARES AND RECTANGLES
- 7th Grade: Represent squares and square roots using geometric models.
- 8TH GRADE: SQUARE ROOTS OF PERFECT SQUARES
- 9TH GRADE: POSITIVE AND NEGATIVE SQUARE ROOTS
 - RELATIONSHIP BETWEEN SQUARES AND SQUARE ROOTS
 - REPRESENT SQUARES AND SQUARE ROOTS USING GEOMETRIC MODELS

1 x 5 =		√58 ≈	
2 x 5 =			
3 x 5 =			
4 x 5 =			
5 x 5 =			

YOU MEAN I REALLY HAVE TO RE-TEACH FRACTIONS??!!

NEW EXPECTATIONS: 3 Gr	rade: Fractions as representations of numbers	Fractional quantities
4 th Gra	ade: Operations on fractions	Decimal concepts
5 th Gr	rade: Fraction equivalence	Operations on fractions

WHERE DID THE WORDS COME FROM:

Latin *frangere* (to break), often called "broken numbers Fibonacci (1202) *Liber abaci* generally used *fractio and* first used the fraction bar Robert Recorde in *Ground of Artes* (1575) "A Fraction in deede is a broken number" IMPROPER: Robert Recorde (1542) *The ground of artes, teachyng the worke and practise of arithmetike* "An Improper Fraction...that is to saye, a fraction in forme, which in dede is greater than a Unit." PROPER: Samuel Jeake *Arithmetic* (1701) "Proper Fractions always have the Numerator less than the

Denominator, for then the parts signified are less than a Unit . . ."

MIXED NUMBER by Robert Recorde (1542) "mixt numbers (that is whole numbers with fractions)"

FRACTION RIDDLE:

I'm a fraction with a value less than ½ . Both my numerator and denominator are one-digit primes. What three fractions could I be?

Fraction Strips: Brief description of how to create your fraction strips. Start with $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

			-				++	Sta
			1					1
	1					1		2
	2			_		2		_
	<u>1</u> 3		<u>1</u> 3			100		3
1		1	1	1			1	τĽ
4		4	_	4			4	_
<u>1</u> 6	<u>1</u> 6		<u>1</u> 6	<u>1</u> 6		<u>1</u> 6	<u>1</u> 6	4
1	1	1	1	1	1	1	1	
8	8	8	8	ð	8	8	8	_
$\frac{1}{12}$ $\frac{1}{12}$	$\frac{1}{12}$ $\frac{1}{1}$	2 <u>1</u> 2	$\frac{1}{12}$	$\frac{1}{12}$ $\frac{1}{12}$	$2 \frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	12 c
	11.11						1	
16 16 16	16 1	0 16 1	0110	10 16	16 16	10 1	6 16	10

2'4'8'16
Label the black strip as your whole with the number 1.
Compare your orange strip to your whole; now fold it into two
equal pieces (hamburger style); label each piece ½ and cut .
Compare your blue strip to your whole; now fold it into two
equal pieces; fold again, now creating how many equal pieces?
[4] Label each of these pieces ¼ and cut.
Compare your purple strip to your whole; now fold it into two
equal pieces; fold again and again, now creating how many
equal pieces? [8] Label each piece $\frac{1}{2}$ and cut
Repeat for 16 th s

6

Now create $\frac{1}{3}, \frac{1}{6}, \frac{1}{12}$.

- Compare your yellow strip to your whole; now Z-fold it to where each piece is equal or measure out 3 equal pieces with a ruler. Label each piece 1/3 and cut.
- 2. Create your $\frac{1}{3}$ pieces, then fold each in half, creating your $\frac{1}{6}$ s; fold in half again to create your $\frac{1}{12}$ s

COMPARING FRACTIONS: FOUNDATIONS FOR COMPUTING

16

16

Strategy 1: compare unit fractions	Strategy 4: compare fractions one unit fraction from
	1 whole
	75
0 5	
Strategy 2: compare fractions with common	
numerators	Strategy 5: compare fractions to ½
3 3	─────────────────────────────────────
	$\frac{1}{2}$

Strategy 3: compare fractions with common	Strategy 6: change fractions to equivalent fraction
denominators	
	· · · · · · · · · · · · · · · · · · ·

4

Why does this work?

SOLVING PROBLEMS WITH A DOUBLE NUMBER LINE

On a bicycle you can travel 20 miles in 4 hours. What are the unit rates in this situation?

+

When the entire 6th grade of 240 students was polled, results showed that 96 students were dissatisfied with the music at a dance. What percentage of the 6th grade does this represent?

Andrew was given an allowance of \$20. He used 75% of his allowance to go to the movies. How much money was spent at the movies?

scholastic.com/mathintervention or call 800-387-1437

	F	ABULOUS FOURS		
Can you than 100	make all the pri D with 6 fours and	me numbers less d these symbols?	4 4 4 4 4 4 + - × ÷ ()!√	
2 =	17 =	41 =	67 =	
3 =	19 =	43 =	71 =	
5 =	23 =	47 =	73 =	
7 =	29 =	53 =	79 =	
11 =	31 =	59 =	83 =	
13 =	37 =	61 =	89 =	
			97 =	
Use the	se six 4s			
4	4 4	4 4	4	
and any	y of these sy	ymbols		
+	- ×	÷ () ! 🗸	
+	- ×	÷ () [] [/	
+	- ×	÷ () ! 🗸	