Giant Polyhedra, Inside and Out: Hands-On Development of 3-D Concepts

Dr. Jacqueline Sack Dr. Michael Connell

University of Houston Downtown

NCTM Annual Meeting, Philadelphia, April 2012

References

Research Backdrop

· Access to depth and rigor for all

- NCTM Process Standards

Action!

Other learning trajectories

Giant Polyhedra, Inside and Out: Hands-On Development of 3-D Concepts

Dr. Jacqueline Sack

Dr. Michael Connell

University of Houston Downtown

Research Backdrop

 Hidden mathematics framework (Abramovich & Brouwer, 2006)

Access to depth and rigor for all

NCTM Process Standards

· van Hiele levels (1986)

756a

 Hidden mathematics framework (Abramovich & Brouwer, 2006)

Centrell, M. L. (2011). Actions upon objects. A meta/hor for technology substated unrice matics instruction, I. D. Teode. & N. Henderson (I.S.). Deng information retinology of matematics. (pp. 143-171). Jingham or, NYHawar h. Nes.

Actions on objects (Connell, 2001)

The Actions upon Objects Teaching cycle¹.

Connell, M. L (2001). Actions upon objects: A metaphor for technology enhanced mathematics instruction. In D. Tooke & N. Henderson (Eds.). <u>Using information technology in mathematics</u>. (pp. 143-171). Binghamton, NY:Haworth Press.

Access to depth and rigor for all

NCTM Process Standards

cess to depth and rigor for all

NCTM Process Standards

van Hiele levels (1986)

NCTM Process Standards

van Hiele levels (1986)

Action!

Relationships and Analysis

NCTM Annual Meeting, Philadelphia, April 201

Relationships and Analysis

Figure	Vertices	Edges	Faces	Angle Deficiency

Figure	Vertices	Edges	Faces	Angle Deficiency

2-D geometry Outline the polygons Find all diagonals What shapes are formed? Measure the angles

•••

Measurement
Surface area and volume
Indirect measurements of figures
using scale drawings, similar
figures, Pythagorean Theorem,
and basic trigonometry

Other learning trajectories

Symmetry and transformations Planes of symmetry Rotational symmetry Use symmetry to enumerate

Dilations

How many triangles if the edges are doubled? How many unit tetrahedra will fill the larger figure? Can you tessellate space with regular tetrahedra? Number relationships in scaling

Stellation and duality

Curvature
What if each vertex must have more than 6 triangular faces?

2-D geometry
Outline the polygons
Find all diagonals
What shapes are formed?
Measure the angles

• • •

Oth

tr

Dilations

How many triangles if the edges are doubled? How many unit tetrahedra will fill the larger figure? Can you tessellate space with regular tetrahedra? Number relationships in scaling

• • •

Stella

Stellation and duality

Curvature
What if each vertex must
have more than 6
have malar faces?

Symmetry and transformations
Planes of symmetry
Rotational symmetry
Use symmetry to enumerate

Measurement
Surface area and volume
Indirect measurements of figures
using scale drawings, similar
figures, Pythagorean Theorem,
and basic trigonometry

Rigorous Mathematics for All

NCTM Annual Meeting, Philadelphia, April 2012

gorous nematics or All

eting, Philadelphia, April 2012

References

Abramovich, S., & Brouwer, P. (2006). Hidden mathematics curriculum: A positive learning framework, For the Learning of Mathematics, 26(1), 12-16, 25.

Connell, M. L. (2001). Actions on objects: A metaphor for technologyenhanced mathematics instruction, Computers in the Schools, 17(1-2), 143-171.

van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education, Academic Press, Orlando: FL.

https://sites.google.com/site/mathgianttriangles/

Contact: Dr. Jacqueline Sack

sackj@uhd.edu

Dr. Michael Connell connellm@uhd.edu

Abramovich, S., & Brouwer, P. (2006). Hidden mathematics curriculum: A positive learning framework, For the Learning of Mathematics, 26(1), 12-16, 25.

Connell, M. L. (2001). Actions on objects: A metaphor for technology-enhanced mathematics instruction, Computers in the Schools, 17(1-2), 143-171.

van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education, Academic Press, Orlando: FL.

https://sites.google.com/site/mathgianttriangles/

(1986). Structure a... ademic Press, Orlando: FL. ademic Press, Orlando: FL. google.com/site/mathgianttriangles/

Contact: Dr. Jacqueline Sack sackj@uhd.edu

Dr. Michael Connell connellm@uhd.edu