Open Your Eyes!
 Seeing Linear Equations Differently

Tamara Pearson, PhD
NCTM National Conference
April 2012

Tiling the Back Walk

Each mosaic tile contains:

- 6 trapezoids
- $1 / 2 \mathrm{ft}$ on the short sides
- 1 ft on the long side

1 ft

- 2 rhombi
- $1 / 2 \mathrm{ft}$ on each side
- 2 triangles
- $1 / 2 \mathrm{ft}$ on each side

Project
GRAD

Tiling the Back Walk

The cost for each individual tile is:

- Trapezoids - \$3/tile
- Rhombi - \$2/tile
- Triangles - \$1/tile

Project
GRAD
MATHEMATICS

Tiling the Back Walk

How much will it cost to tile Mrs. Ramirez's back walk?

\$624.00

Tiling the Back Walk

- What information is needed in order to solve this problem?
- Is there only one way to solve this problem?

Functional Understanding

- $6^{\text {th }}$ Grade: 6.EE. 9
- Use variable to represent two quantities in a real world problem that change in relationship to one another
- 7th Grade: 7.EE. 4
- Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations to solve problems by reasoning about quantities
- $8^{\text {th }}$ Grade: 8.F
- Define, evaluate, and compare functions
- Use functions to model relationships between quantities

Project
GRAD

Tiling the Back Walk

Finding the Perimeter...

When thinking about the perimeter, let's use hexagon tiles.

Tiling the Back Walk

Finding the Perimeter...

When thinking about the perimeter, let's use hexagon tiles.

Finding The Pattern
(1)

What "rule" describes the perimeter given any number of hexagons?
(3)

Students Interviewed

- 18 students in grades 6-8
- Variety of "readiness" levels as categorized by their teachers
- 6 different "rules" for the pattern

Student Solutions

- $y=4 x+2$
- $y=6 x-2(x-1)$
- $y=5+4(x-2)+5$
- $y=6+4(x-1)$
- $y=6 x-2(x-2)-2$
o $y=5 x-(x-2)$

Teaching Linear Equations

- What are some of the common student challenges with linear equations?

Recursive

x	\mathbf{y}
1	3
2	5
3	7

Closed

Recursive to Slope-Intercept

$$
y=m x+4
$$

- What does Joi know?
- What misconceptions does Joi have?

Slope-Intercept Form

$$
y=4 x+2
$$

- What does Joi understand about the construction of her "rule"?
- What misunderstandings does Joi still have?

Conceptual and Procedural Knowledge

Developing Conceptual Understanding

"Communication can support students' learning of new mathematical concepts as they act out a situation, draw, use objects, give verbal accounts and explanations, use diagrams, write and use mathematical symbols."

National Council of Teachers of Mathematics
"Principles and Standards for School Mathematics", p. 61

Multiple Representations

Taken from
"Elementary and Middle School
Mathematics"
Van de Walle, Karp, \& Bay-Williams

Question

How can the utilization of geometric patterns help students build conceptual understanding of linear functions?

Project GRAD
MATHEMATICS

Patterns in the Groups of 2

$$
\begin{aligned}
& 2 \text { tiles }=6+6-2^{19} \\
& 3 \text { tiles }=6+6+6-4^{29} \\
& 4 \text { tiles }=6+6+6+6-6^{39} \\
& 9 \text { tiles }=6 \times 9-16^{69}=82^{199} \\
& 20 \text { tiles }=6 \times 20-38= \\
& 100 \text { tiles }=6 \times 100-99 \times 2= \\
& 100-(100-11 \times 2
\end{aligned}
$$

Completed Equation

- What is her understanding about the construction of this equation?
o How is this understanding different than her understanding of her first equation?

Project
GRAD

Tiling the Back Walk

Be sure to include the following 3 representations:
-Pictorial representation of how you see the pattern growing
-Function to represent how the perimeter pattern grows

- Verbal description of your solution

Party with Peeps

I am having a party, and I want to give 2
Peeps to each of my guests as part of a party favor bag. Because the Peep rush has ended, Haribo is having a special promotion. For each package of Peeps that you order, you get 2 Peeps as a gift.

Keys to Success for Students

- Making and using predictions
- Documenting mathematically
- Discussing and explaining thinking
- Moving from the concrete to the abstract

Keys to Success for Teachers

- Listen then respond
- Think like your students
- Explain as a way of building on their knowledge
- Be patient!

