Exciting Activities with TI-nspire that delless the Common Core Standards fol

Allgebra 2

Brendan Kelly, Ph.D., Ed.D.
Professor Emeritus
University of Toronto

Problem 1: How many bases were stolen by Barry Bonds and Willy Mays

Problem 1

	Barry Bonds	Willie Mays
Home Runs	762	660
Stolen Bases	$x+176$	x
Power/Speed	$h(x+176,762)$	$h(x, 660)$

If x denotes the number of bases stolen by Willie Mays, then the condition that Barry Bonds has a power/speed number that is about 166.85 greater than Willie Mays' power/speed number, is given by:

$$
\underset{\substack{\text { Barry Bonds' } \\ \text { power/speed } \#}}{h(x+176,762)-\underset{\text { Willy Mays' }}{ } \quad h(x, 660) \approx 166.85}
$$

During their careers, Barry Bonds and Willie Mays scored 762 and 660 home runs respectively. Also Barry Bonds stole 176 more bases than Willie Mays.

Barry Bonds has a power/speed number that is about how many bases did each of them steal?

Problem 1

We let x denote the Willie Mays. The career stolen bases, home runs, and power/speed numbers are given in the table.

Click on the Home Key and access

Press menu and select:

The Define command appears

Use the catalog key to access nSolve Enter the nSolve(command as shown Substitute $x=338$ into the table

Problem 1		
Substituting $x=338$, we obtain the following table:		
	Barry Bonds	Willie Mays
Home Runs	762	660
Stolen Bases	514	338
Power/Speed	613.90	447.05

The difference in their power/speed numbers is: $613.90-447.05 \approx 166.85$
Verifying that our answer is correct!

Define $h(x, y)$ as in the display.

Compare the solutions with and without technology

Problem 2：How long does it take a pizza to cool to room temperature？

a）Graph $f(x)$ in the window：$-10 \leq x \leq 100 ;-10 \leq y \leq 50$ What is the temperature of the pizza：
i）When it comes out of the oven？
ii） 20 minutes later？
iii） 30 minutes later？
b）How long does it take the pizza to reach room temperature（i．e．， $76^{\circ} \mathrm{F}$ ）？

Press the menu key and select

1 1：Actions	F1：Window Settings．
2：View	12：Zoom－Box
At 3：Graph Entry／E	\oplus 3：Zoom－In
T／4．4：Window／Zoor	今 4：Zoom－Out
A 5：Trace	㛣 5：Zoom－Standard
\＄ 6 ：Analyze Grap	Is 6：Zoom－Quadrant 1
7：Table	＋5，7：Zoom－User
$\triangle 8$ ：Geometry	䡙8：Zoom－Trig
1＋1］9：Settings．．．	
－vix $\mathrm{fl}(\mathrm{x})=75+2$	A：Zoom－Fit
（ 国 $\mathrm{f} 2(\mathrm{x}$（ $=$	－

Complete the template as in the display and press enter．

Press the menu key and select：To find the temperature at time $x=0$
we press： 0 enter． Trace＞Graph Trace and press enter．

To find the temperature at time $x=20$ we press： 20 enter．

To find the temperature at time $x=30$ we press： 30 enter．

Enter $\mathrm{f} 2(x)=76$ in the entry line and press enter．

Press menw and select Geometry＞
Points \＆Lines＞Intersection Point（s）

Compare the solutions with and without technology

Problem 3

The majestic Gateway Arch in St. Louis is almost parabolic in shape.

Its vertex is 630 feet above the ground and it spans
630 feet at its base. Find the equation of the parabola through the vertex and the feet of the arch.

Problem 3

The Gateway Arch can be modeled by the parabola with equation $y=0.00635 x^{2}+630$.

Access Geometry \& Graphs

Enter $f 1(x)=-0.00635 x^{2}+630$

Press menu and select:
Points \& Lines > Intersection Points

Press ENTER to see the graph of the parabola

Click on the graph of the parabola and on the graph of $y=300$.

Enter $f 2(x)=300$

Intersection points are $(-228,300)$ and $(228,300)$ so the span is about 456 feet at a height of 300 feet.

Press ENTER to see the graph of the line $y=300$

FREE tns files! Visit us at: www.brendankellypublishing.com

1. Visit:
http://www.brendankellypublishing.com
2. Access the "Contact Us" button contact us
3. Request files
