It is better to know some of the questions than all of the answers. James Thurber

It is possible to store the mind with a million facts and still be entirely

You can observe
a lot just by
watching.
"We cannot teach people anything; we can only help them discover it within themselves."
-- Galileo Galilei uneducated.

Alec Bourne

The creative principle of science
resides in
mathematics.
Albert Einstein

If you are faced by a difficulty or a controversy in science, an ounce of algebra is worth a ton of verbal argument.
 J.B.S. Haldane of

Making Meaningful Mathematics

using origami

NCTM Annual Meeting Philadelphia, PA

April, 2012
Joseph Georgeson
University School of Milwaukee
j_georgeson@earthlink.net

Assumptions:

> mathematics is the search for patternspatterns come from problemstherefore, mathematics is problem solving.

meaningful math is better than meaningless math
teaching is not telling

what does algebra look like?

$$
\begin{aligned}
& \frac{x-5}{x}=\frac{2}{3} \\
& 3(x-5)=2 x \\
& 3 \mathrm{x}-15=2 \mathrm{x} \\
& x-15=0 \\
& \mathrm{x}=15 \\
& \text { solve : } \\
& 10-2 x=x(x-5) \\
& 10-2 x=x^{2}-5 x \\
& 10=x^{2}-3 x \\
& 0=x^{2}-3 x-10 \\
& x^{2}-3 x-10=0 \\
& (x-5)(x+2)=0 \\
& \therefore \mathrm{x}=5 \text { or } \mathrm{x}=-2 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y=m x+b \\
& A x+B y=C \\
& \text { Solve } \\
& 2 x^{2}-5 x-10=0 \\
& \frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \\
& \frac{5 \pm \sqrt{25-(-80)}}{4} \\
& 5 \pm \sqrt{105} \\
& 4 \\
& 1000=500(1.05)^{x} \\
& 2=(1.05)^{x} \\
& \log 2=\log (1.05)^{x} \\
& \log 2=x \log (1.05) \\
& \frac{\log 2}{\log 1.05}=x \\
& (x+2)(x+5) \\
& x^{2}+2 x+5 x+10 \\
& x^{2}+7 x+10 \\
& \text { Find the area of a } 10^{\prime \prime} \text { circle : } \\
& \mathrm{A}=\pi \mathrm{r}^{2} \\
& A \approx 3.14(10)^{2} \\
& A \approx 314 \text { square inches }
\end{aligned}
$$

the rule of four:

represent a relation in three ways-

as a table of numbers, as an equation, as a graph,

and verbally!
An Example

A triangle has no diagonals. A square has two diagonals. A convex pentagon has five diagonals.

The number of diagonals in a convex polygon is a function of the number of sides.

What is the relationship between the number of sides and the number of diagonals in a polygon?
some pictures to help understand the problem:

a table showing the relation between sides and diagonals:

sides	diagonals
3	0
4	2
5	5
6	
7	
8	

a graph showing this relation, which is a function:

an verbal explanation of the pattern:

Since every vertex is connected to all other vertices, except three litself and the two adjacent ones), for 10 sides you would multiply 10 times 7 ; and since they were all drawn twice, divide by 2.

and the equation showing the functional relation:

$$
y=\frac{x(x-3)}{2}
$$

here is a cube made from square paper.
here are some other cubes, built the same, but starting with square paper of various sizes

As the size of the square that made the cube varies, the volume will vary.

But, how?
here is the paper that was used-

the paper ranges in size from a 3" square to an 8 " square

How does volume change in relation to changes in the size of the paper used to make the cube?

To answer this question we will build cubes, measure their volume, record data in a table, graph the results, and find patterns.

so, let's build a cube-

the process is called multidimensional transformations because we transform square paper into a three dimensional cube

Another more common name is UNIT ORIGAMI

two very useful books-highly recommended.

Unit Origami, Tomoko Fuse

Unfolding Mathematics with Unit Origami, Key Curriculum Press

This is one UNIT.
We need 5 more UNITS to construct a cube.

Finding the volume.

Student understanding of volume can be connected to a formula with little understanding about what the number represents.

Therefore we won't use a formula, but fill the cube and count.

Then, we will use a formula.

Fill your cube (the one made from 6" squares) with beans.

Count the beans.
Agree as a table on a number.
If you have time you could build another cube from 4 " squares or use the small cubes that are on your table made from $3^{\prime \prime}$ squares.

We are gathering data.

Here are my results:
plot the points in geogebra what information can you get from the graph?
what patterns do you notice in the table?
is this relation linear?
is it direct (proportional)?
predict the volume (in beans) if you started with $12^{\prime \prime}$ paper squres.

original square	number of beans
1	
2	
3	44
4	116
5	242
5.5	320
6	
7	660
8	1012
9	
10	

"the goal is not to 'cover' mathematics, but to 'uncover' it." Marion Walters (paraphrased)

So, we will unfold a unit to
uncover some of the mathematics.
where is the face of the cube and what is its area? where is the length of the cube, and what is that length? assume the original square to be $8^{\prime \prime}$

length of original square	resulting length of cube	resulting area of one face of cube	resulting volume of cube
1		$\frac{1}{8}(1)^{2}$	
2	$\sqrt{\frac{1}{8}(2)^{2}}$	$\frac{1}{8}(2)^{2}$	$\left(\sqrt{\frac{1}{8}(2)^{2}}\right)^{3}$
3		$\frac{1}{8}(3)^{2}$	
4	$\sqrt{\frac{1}{8}(4)^{2}}$	$\frac{1}{8}(4)^{2}$	$\left(\sqrt{\frac{1}{8}(4)^{2}}\right)$
5		$\frac{1}{8}(5)^{2}$	
6	$\sqrt{\frac{1}{8}(6)^{2}}$	$\frac{1}{8}(6)^{2}$	$\left(\sqrt{\frac{1}{8}(6)^{2}}\right)^{3}$
7		$\frac{1}{8}(7)^{2}$	
8	$\sqrt{\frac{1}{8}(8)^{2}}$	$\frac{1}{8}(8)^{2}$	$\left(\sqrt{\frac{1}{8}(8)^{2}}\right)$
9		$\frac{1}{8}(9)^{2}$	
10	$\sqrt{\frac{1}{8}(10)^{2}}$	$\frac{1}{8}(10)^{2}$	$\sqrt{\left.\sqrt{\frac{1}{8}} 10\right)^{2}}$
X	$\sqrt{\frac{1}{8}(x)^{2}}$	$\frac{1}{8}(x)^{2}$	$\left(\sqrt{\frac{1}{8}(x)^{2}}\right)$

length of original square	resulting length of cube	resulting area of one face of cube	resulting volume of cube
1	0.354	0.125	0.044
2	0.707	0.5	0.354
3	1.061	1.125	1.193
4	1.414	2	2.828
5	1.768	3.125	5.524
6	2.121	4.5	9.546
7	2.475	6.125	15.159
8	2.828	8	22.627
9	3.182	10.125	32.218
10	3.535	12.5	44.194
x			

length of original square	volume using beans	volume in cubic inches	ratio
1			
2			
3	44	1.193	36.8818106
4	116	2.828	41.01838755
5	242	5.524	43.8088342
6	guess $=420$	9.546	about 44
7	660	15.59	43.538492
8	1012	22.627	44.7253281
9			
10			
x			

other uses for this unit:

models of volume, surface area, and length

Sierpinski's Carpet in 3 dimensions

models for the Painted Cube problem
construct stellated icosahedron with 30 units, stellated octahedron with 12 units or

here is a stellated icosahedron-

30 units are required
this is a Buckyball, 270 units

a science
 fair projectdetermining how many structures
 the unit can make

Sierpinski's carpet in 3 dimensions-

a wall of cubes!

sources that would be helpful:

handout: this keynote is available in pdf form at
http://pimanl.wikispaces.com
the other resources that would be very helpful are the two books

Unit Origami, Tomoko Fuse

Unfolding Mathematics using Unit Origami, Key Curriculum Press
geogebra.org

