Exploring Middle Grades Geometry Using Google SketchUp

Home

National Council of Teachers of Mathematics Annual Conference ~ Philadelphia, PA

Friday, April 27, 2012
Suzanne Harper, Miami University, harpersr@muohio.edu Shannon Driskell, University of Dayton, sdriskell1@udayton.edu

Description: Google SketchUp is a 3D modeling program designed for educators, architects, civil engineers, filmmakers, game developers, and related professions. It is designed to be easier to use than other 3D CAD programs. The software (version 8) can be downloaded for free at http://sketchup.google.com/. A great resource for SketchUp is Google 3D Warehouse http://sketchup.google.com/intl/en/product/3dwh.html. It's a website that provides a place where modelers can share their models on the internet. It has many models for creating a three dimensional environment. Another great resource for some SketchUp basic skills is available through Dr. Kathryn Shafer's website https://sites.google.com/site/kgshafertpack/suvideos

Activity 1: Drawing Special Polyhedra

In this activity, students will construct various polyhedra using Google SketchUp. We will emphasize using appropriate geometric vocabulary such as: face, vertex (vertices), edge, prism, and pyramid. Students will also investigate relationships involving the number of edges, the number of faces, and the number of vertices in different types of polyhedra.

Common Core Standards - Grade 7 Geometry

7.G.2. Draw (freehand, with ruler and protractor, and with technology) geometric (two- and threedimensional) shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.

Directions:

1. Using Google SketchUp, draw a 6' x 6' x 6' cube. (Note: For a screen cast of this construction click here.)
a. Open SketchUp and click the Chose Template Button. Select Simple Template - Feet and Inches. Then, click on Start Using SketchUp.
b. After selecting the feet and inches template a Google SketchUp worksheet should open. If this is your first time opening the template, you may want to open the large tool set to view all of the tools. Click View->Toolbars->Large Toolset.
c. Select the rectangle tool \square and left-click on the origin and begin to drag along the red and green axes.

d. To create a 6' X 6' square, type 6', 6' and press enter. You should see the dimensions you typed appear in the Dimensions box located in the bottom right corner of your screen.

e. Next, select the push/pull tool Click on the square and simultaneously drag the mouse up to make the square three dimensional.

f. To create a height of 6', type 6' and press enter. The dimension will appear in the box located in the bottom right corner of your screen.
Congratulations, you created a 6' x 6' x 6' cube!
g. To verify the dimensions, select the dimensions button $\stackrel{\substack{*}}{\mathbb{K}^{*}}$. Select two endpoints, drag the dimension to a viewable area, and click to set the dimension.

[^0]2. Answer the following questions about the cube. Fill in the blank:

Number of Faces \qquad Number of Vertices \qquad Number of Edges \qquad
3. Drag your cube to a different location in your window and continue to draw a triangular prism, a nonsquare rectangular prism, an equilateral triangular pyramid (tetrahedron), and a square pyramid. Draw one more polyhedron not represented in the previous list.
4. Leonhard Euler was a famous mathematician who noticed a relationship among the vertices, faces, and edges. Using your drawings of various polyhedra, fill in the following table and calculate the last column. Euler's relationship involves the last two columns of the table. Hypothesize a conjecture and verify your conjecture using a polyhedron that is not listed in the table below.

Polyhedron	Number of Faces (F)	Number of Vertices (V)	Number of Edges (E)	F+ V
cube				
triangular prism				
non-square rectangular prism				
tetrahedron				
square pyramid				

Extension:

Consider non-simple polyhedra (polyhedra with holes). Is the relationship you found in \#4 still true?
Construct 2-3 examples using Google SketchUp to support your claim.

Activity 2: Cross Sections of a Cube

Activity adapted from: http://www.learner.org/courses/learningmath/geometry/session9/part_c/index.html
Students will construct a cube using Google SketchUp and use their problem-solving skills to decide how to slice the cube using a single plane to define various shaped cross-sections. Students who have had little experience with spatial-visualization activities will likely have difficulty visualizing these cross sections without a model because they cannot envision the unseen faces of the shape. The use of Google SketchUp will aid in this type of visualization.

Common Core Standards - Grade 7 Geometry

7.G.3. Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.
G-GMD.4. Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of 2-D objects.

Directions: A cross section is the face you get when you make one slice through an object. To the right is a sample slice through a cube, showing one of the cross sections you can construct.

The polygon formed by the slice is the cross section. The cross section cannot contain any piece of one of the original faces of the cube. In this picture, only the gray piece is a cross section.

1. Using Google SketchUp, construct a cube and slice it using a single plane to create the following cross sections:
a) an equilateral triangle
d) a rectangle, that is not a square
g) a hexagon
b) a square
e) a triangle, that is not equilateral
h) an octagon
c) a pentagon
f) a parallelogram, that is not a rectangle
i) a circle

Record which of the shapes you were able to create and how you constructed them.
2. A few of the shapes in Problem 1 are impossible to make by slicing a cube. Explain why they are impossible to create.
3. What possible cross sections can you obtain from any right rectangular prism? Keep a detailed record of your solutions.
4. What possible cross sections can you obtain from any right rectangular pyramid?

Keep a detailed record of your solutions.

5. Compare your solutions to Problems $3 \& 4$.

6. Find a way to slice a tetrahedron to create a square cross section. Explain your solution to your neighbor.

Activity 3A: Google SketchUp Scaling Design Project

Activity adapted from: $\underline{h t t p: / / w w w . d i s c o v e r y e d u c a t i o n . c o m / t e a c h e r s / f r e e-l e s s o n-p l a n s / d i s c o v e r i n g-m a t h-e x p l o r i n g-g e o m e t r y . c f m ~}$
Students will construct a three-dimensional model of a city using Google SketchUp. Working either individually or in a small group, students will prepare a written portfolio on the mathematical construction of a three-dimensional model. The project will consist of a Google SketchUp file, as well as a written mathematical analysis from each group member.

Common Core Standards - Grade 7 Geometry

7.G.1. Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
7.G.6. Solve real-world and mathematical problems involving area, volume, and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.

Criteria of the Project

1. Construct a three-dimensional model of a city using Google SketchUp.

Your city must have at least 8 buildings (clearly labeled A, B, C, etc,) with the following criteria:

- Building A and Building B are geometrically congruent;
- Building C and Building D are mathematically similar with a scale factor less than 1;
- Building E and Building F are mathematically similar with a scale factor greater than 1;
- Building G is a reflected image of one of the other Buildings; and
- Building H is a rotated image of one of the other Buildings.

Also, add streets to the city using line segments; and name your streets using the Text tool.
2. Write a paragraph about your Building construction process using Google SketchUp. Include a description of the streets using the terms such as parallel, perpendicular, and intersecting. Your description should be written in complete sentences using appropriate mathematical vocabulary.
3. Compute the surface area of Buildings C and E . Using the scale factor between Buildings C and D, describe how to compute the surface area of Building D. Then, do the same for Buildings E and F. Your documentation must be clearly written in complete sentences along with mathematical equations using correct measurement units.
4. The City Council would like you to create an actual three-dimensional model of your city out of clay. Since you cannot build the model to its true scale, you must create a plan to scale down your model. Also, before you get started on the model's construction, you must figure out how much clay you will need to purchase to construct all of your buildings. Describe and compute the volume of your buildings in terms of the scale factor you selected. Write about the scaling process and clearly document your volume calculations using correct measurement units.

Activity 3B: Google SketchUp Scaling Design Project

Adapted from: Shafer, K.G., Severt, G., \& Olson, Z.A. (2011). Sketching up the digital duck. Mathematics Teacher, 105(4), 262-268.
Students will construct a model of a three-dimensional object using Google SketchUp. Work with your small group (3 people per group) to prepare a written portfolio on the mathematical construction of a three-dimensional object. Your project will consist of both technology and print copies of your construction, as well as a written reflection from each group member.

Project Component	Description	Guidelines
Section 1: Design of Solid	The base of your shape must include at least one arc and one angle that is not 90°. The height must be greater than 1 cm (use metric measurements throughout the project).	Submit a sketch of your base design (hand drawn on graph paper).
Section 2: Construction of the Base in GeoGebra	Create a net of the base in GeoGebra with the segments and angle measurements shown on the page.	Print out a copy of the GeoGebra file.
Construction of Solid	Cut out matching bases from cardboard, and use one strip of construction paper for the lateral edges. Tape the three pieces together.	Submit your solid, clearly labeled with group member names.
Section 3: Construction of Solid in Google SketchUp	Use Google SketchUp to create a threedimensional image of your shape with the linear measurements shown.	Print out two different views from the Google SketchUp file.
Section 4: Surface Area and Volume	Clearly document the dimensions of your shape and the computation used to find the lateral surface area, total surface area, and volume.	Your documentation must be written in complete sentences, along with mathematical equations using correct measurement units. It must be easy to follow.
Section 5: Scaling of Solid	Using the scale factor of either 0.75 or 1.25 (your choice), clearly document the dimensions of your shape and the computations used to find the lateral surface area, total surface area, and volume.	Your documentation must include a Google SketchUp image with linear measurements shown; and a description written in complete sentences along with mathematical equations using correct measurement units. It must be easy to follow.
Section 6: Personal Reflection	Answer the following prompts: - Document the contributions made by you and your group members. - Reflect on this project as a future middle-school geometry teacher.	Type and submit your reflection as the last pages of your portfolio.

Adapted from: Shafer, K.G., Severt, G., \& Olson, Z.A. (2011). Sketching up the digital duck. Mathematics Teacher, 105(4), 262-8.

[^1]
SketchUp 8 Quick Reference Card

Display additional tool bars by choosing View > Toolbars from the menu bar.

| Tool | Operation | Instructions |
| :--- | ---: | :--- | :--- |
| Arc (A) | Bulge | specify bulge amount by typing a number and Enter |
| | Radius | specify radius by typing a number, the R key, and Enter |
| | Segments | specify number of segments by typing a number, the S key, and Enter |
| Circle (C) | Shift | lock in current plane |
| | Radius | specify radius by typing a number and Enter |
| | Segments | specify number of segments by typing a number, the S key, and Enter |
| Craser (E) | Ctrl | soften/smooth (use on edges to make adjacent faces appear curved) |
| | Shift | hide |
| | Ctril+Shift | unsoften/unsmooth |
| Follow Me | Alt | use face perimeter as extrusion path |
| | Better Way | first Select path, then choose the Followi Me tool, then click on the face to extrude |

Harper, S.R. \& Driskell, S.O. (April 2012). Exploring middle grades geometry using Google SketchUp. Session presented at the National Council of Teachers of Mathematics, Philadelphia, PA. Complete handout available at: http://www.users.muohio.edu/harpersr/conferences/NCTM2012.pdf

Tool	Operation	Instructions
Arc (A)	Bulge	specify bulge amount by typing a number and Enter
	Radlus	specify radius by typing a number, the R key, and Enter
	Segments	specify number of segments by typing a number, the S key, and Enter
Circle (C)	Shift	lock in current plane
	Radlus	specify radius by typing a number and Enter
	Segments	specify number of segments by typing a number, the S key, and Enter
Eraser (E)	Option	soften/smooth (use on edges to make adjacent faces appear curved)
	Shift	hide
	Option+Shlft	unsoften/unsmooth
Follow Me	Command	use face perimeter as extrusion path
	Better Way	first Select path, then choose the Follow Me tool, then cllck on the face to extrude
LIne (L)	Shift	lock in current inference direction
	Arrows	up or down arrow to lock in blue directlon; right to lock in red; left to lock in green
	Length	specily length by typing a number and Enter
Look Around	Eyo Helght	specily aye helght by typing a number and Enter
Move (M)	Option	move a copy
	Shift	hold down to lock in current inference direction
	Command	auto-fold (allow move even If It means adding extra edges and faces)
	Arrows	up or down arrow to lock in blue directlon; right to lock in red; left to lock in green
	Distance	specify move distance by typing a number and Enter
	External Array	n coples in a row: move first copy, type a number, the X key, and Enter
	Internal Array	n coples In between: move first copy, type a number, the / key, and Enter
Offset (F)	Double-Cllck	apply last offset amount to this face
	Distance	specify an offset distance by typing a number and Enter
Orblt (0)	Option	hold down to disable "gravity-welghted" orbiting
	Shift	hold down to activate Pan tool
Paint Bucket (B)	Option	paint all matching adjacent faces
	Shift	paint all matching faces in the model
	Option+Shift	paint all matching faces on the same object
	Command	hold down to sample material
Push/Pull (P)	Option	push/pull a copy of the face (leaving the original face in place)
	Double-Cllck	apply last push/pull amount to this face
	Distance	specify a push/pull amount by typing a number and Enter
Rectangle (R)	Dimensions	specify dimensions by typing length, width and Enter le. 20,40
Rotate (Q)	Option	rotate a copy
	Angle	specify an angle by typing a number and Enter
	Slope	specify an angle as a slope by typing a rise, a colon () a a run, and Enter le. 3:12
Scale (S)	Option	hold down to scale about center
	Shift	hold down to scale unlformly (don't distort)
	Amount	Specify a scale factor by typing a number and Enter le. $1.5=150 \%$
	Length	speclfy a scale length by typing a number, a unit type, and Enter le. 10 m
Select (Spacebar)	Option	add to selection
	Shift	add/subtract from selection
	Option+Shlft	subtract from selection
Tape Measure (T)	Option	create a new Guide
	Arrows	up or down arrow to lock in blue directlon; right to lock in red; left to lock in green
	Restze	resize model: measure a distance, type intended size, and Enter
Zoom (Z)		hold down and cllck-drag mouse to change Fleid of Vew

Harper, S.R. \& Driskell, S.O. (April 2012). Exploring middle grades geometry using Google SketchUp. Session presented at the National Council of Teachers of Mathematics, Philadelphia, PA. Complete handout available at: http://www.users.muohio.edu/harpersr/conferences/NCTM2012.pdf

[^0]: Harper, S.R. \& Driskell, S.O. (April 2012). Exploring middle grades geometry using Google SketchUp. Session presented at the National Council of Teachers of Mathematics, Philadelphia, PA. Complete handout available at: http://www.users.muohio.edu/harpersr/conferences/NCTM2012.pdf

[^1]: Harper, S.R. \& Driskell, S.O. (April 2012). Exploring middle grades geometry using Google SketchUp. Session presented at the National Council of Teachers of Mathematics, Philadelphia, PA. Complete handout available at: http://www.users.muohio.edu/harpersr/conferences/NCTM2012.pdf

