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Who Are We?



It’s time to play for 
FABULOUS

prizes.

Let’s Make a Deal:
To Switch or Not to Switch



There are three doors. Behind one of the three is a fabulous 
prize. Behind the other two doors are Zonks! The host asks 
you to choose one of the three doors. After you have selected 
your door, he knowingly reveals a Zonk behind one of the 
other two doors and gives you the opportunity to switch 
doors. 

Should you switch?

Let’s Make a Deal:
To Switch or Not to Switch



Let’s Make a Deal

Let’s begin by playing lots and lots of times and see what 
happens. This will allow us to establish an 
experimental probability.

Experimental probability is the probability of an 
event occurring (ratio of favorable outcomes to total 
outcomes) in a particular experiment. An experiment of 
this sort is generally a series of trials of flipping coins, 
rolling dice, picking doors, etc.

The Monty Hall Experiment



Let’s Make a Deal

In our experiment we won approximately 1/3 of the time 
when we did not switch and around 2/3 of the time when 
we switched. That seems odd.

But what have we really shown? Do these results 
constitute a mathematical proof demonstrating that 
one should always switch?



Let’s Make a Deal

A mathematical proof is a demonstration that a 
mathematical statement is necessarily true; that the 
statement couldn’t be otherwise without resulting in a 
contradiction.

Though we ran 1000 trials for each case, our results 
could be aberrant. It is possible, for instance, though 
highly unlikely that I could flip a coin 1000 times and 
each time it lands on heads though the probability of 
getting heads on a single flip is ½. We could have just 
experienced one of the most impressive statistical 
anomalies in recorded history…



Let’s Make a Deal

…but we didn’t.

Let us now provide a logical demonstration, a conceptual 
proof, one should always switch. It is not quite a formal 
mathematical proof, but it will explain the experimental 
results and demonstrate that one should always switch.

We’ll use a branch of mathematics known as probability 
theory to provide the analysis.



Let’s Make a Deal

What is the probability that the prize is behind the door 
you chose?

You choose your door, the host opens a different door, 
revealing a Zonk, and gives you the opportunity to 
switch. You keep your door. How often will the prize be 
behind your door?

1/3

1/3



Let’s Make a Deal

So, we’ve established that by keeping the door, your odds 
of winning are 1/3, which matches our experimental 
results.

But, what if you switch? We know that the prize is 
behind the door you chose 1 out of every 3 times. That 
means the prize is in one of the other two doors 2 out of 
every 3 times.



Let’s Make a Deal

Here’s the catch…

By revealing a Zonk behind on of those two doors, the 
host shows you (in those 2 out of 3 cases) exactly which 
remaining door the prize is behind. (As long as you 
didn’t pick the right door in the first place, you’re 
guaranteed to win by switching)

We know that 2 out of 3 times, the prize is behind one of 
the doors you didn’t choose. 

Therefore 2/3 of the time the prize is behind the door 
to which you can switch!



Let’s Make a Deal

Let’s look at it another way…

Suppose you choose door #1 and decide to switch. Here 
are the three equally likely outcomes:
1. The prize is behind door #1. Doors #2 and #3 contain 

Zonks. You switch. Zonk!
2. The prize is behind door #2. The host reveals door 

#3. You switch. Prize!
3. The prize is behind door #3. The host reveals door 

#2. You switch. Prize!



Let’s Make a Deal

It works exactly the same way if you initially choose door 
#2 or door #3 and then switch.

In each case, you 
win 2 out of 3 times 

when you switch!



Let’s Make a Deal

We can give a more formal analysis using Bayes’ 
Theorem.

Bayes’ Theorem:
P(A|B) =

P(B|A)·P(A)
P(B)

Without loss of generality we name the doors as follows:
a=door initially picked by contestant
b=door opened by host
c=third door



Let’s Make a Deal

Let A, B, and C represent the prize being behind a, b, and 
c, respectively. Let O represent the host opening b.

Bayes’ Theorem for Monty Hall:

P(C|O) =
P(O|C)·P(C)

P(O)

P(O|C)=1. The host has to open b given that the prize is 
behind c.

P(C)=1/3. It is equally probable that the prize is located 
behind any one of the three doors.



Let’s Make a Deal

P(C|O) =
1·1/3
P(O)

What is P(O)?

The probability that the host opened door b is conditional 
upon where the prize is located.

More formally:

P(O)=(P(O|A)⋅P(A))+(P(O|B)⋅P(B))+( P(O|C)⋅P(C))



Let’s Make a Deal

P(A), P(B), and P(C) are each 1/3. Remember, it is 
equally probable that the prize is located behind any one 
of the three doors.

P(O)=(1/2·1/3)+(0·1/3)+(1·1/3)
=1/2

P(O)=(P(O|A)⋅P(A))+(P(O|B)⋅P(B))+( P(O|C)⋅P(C))

P(O|A)=1/2. The host could have opened either b or c.
P(O|B)=0. The host can’t open the prize door.
P(O|C)=1. The host could only open door b. 



Let’s Make a Deal

P(C|O) =
1·1/3
1/2

P(C|O) =2/3

Therefore:

The probability that the prize is in the third door, c, 
given that the host opened b is 2/3.



Deal or No Deal: 
Besting the Banker



Deal or No Deal: 
Besting the Banker

In front of you, you have the choice of 26 suitcases, all 
containing a cash prize. The prizes range from $0.01 to 
$1,000,000. To play the game, you pick a case. Then, in 
subsequent rounds you pick cases to reveal the prize 
amounts within. This is followed by an offer from the 
“banker.” 

Do you take the deal or keep going to eventually 
claim the prize in the case you originally chose?



Deal or No Deal

Can we use mathematics to help us know when 
to take the banker’s deal and when not to?

In order to know whether or not the deal being offered is 
a good one, we have to be able to come up with a value 
for our case. To do so, we need to use the concept of 
expected value.

The expected value (EV) of a variable is the weighted 
average of all possible values it could have. It tells us not 
the actual value, but, on average, what the value of the 
variable is. For Deal or No Deal, it tells us, on average, 
how much our case is worth.



Deal or No Deal

An example: I tell you that I will give you a dollar for 
each pip (little dot) facing up when you roll a regular six-
sided die. What is the EV of your roll?

To find the EV, we multiply the value of each possible 
outcome ($1, $2, $3…$6) by its probability (1/6 in each 
case) and then find the sum.

In this case:
EV(roll)= $1(1/6) + $2(1/6) + $3(1/6) + $4(1/6) + 
$5(1/6) + $6(1/6)=$3.50

Notice, because all outcomes are equally probable, 
EV=sum of outcomes ($21)/number of outcomes (6)



Deal or No Deal

To find the EV of your suitcase, simply sum up all of the 
remaining suitcase values and divide by the number of 
remaining suitcases (because all suitcase values are 
equally likely to be in your suitcase).

In theory, if the banker offers something less than the 
expected value of your suitcase, NO DEAL. If the banker 
offers something more, DEAL.

But what does that mean for playing Deal or No 
Deal?

So, playing rationally (in a mathematical sense) means 
you may have to turn your nose up at $200,000!



Plinko: 
Let the Chips Fall Where 
They’re Most Likely To



Plinko: 
Let the Chips Fall Where 
They’re Most Likely To

In the game of Plinko on the Price is Right, contestants 
have the chance to win five Plinko chips by playing a 
pricing game. They then send these chips plinking down 
the Plinko board to win cash prizes. The amount of the 
prize is determined by the slot in which the chip lands. 
Simple, but strangely compelling…

With all of the random bouncing, does it really 
matter from whence the Plinko chip plinks? 



Plinko

We could start by just dropping chips over and over and 
tracking the results. That would be mesmerizing fun, but 
would only get us as close to an answer as 
experimental probability can. And we want to be 
certain. We want a proof.

To see if the outcome depends on where the chip is 
released, we need to be able to demonstrate the 
probabilities with which a chip will land in the various 
slots based on the release points. Let’s start with a 
smaller board…

Good question. How do we find the answer?



Plinko

At the first peg it has a ½ probability 
of going left and a ½ probability of 
going right. If it falls left at peg 1, it 
hits another peg and again has a ½ 
probability of going left and a ½ 
probability of going right. If it falls 
right at peg 1…

What happens when we start a chip in 
B?

We can represent the possible paths as 
follows.



Plinko



Plinko

Multiplying down each branch of the tree and then adding 
the probabilities for each slot, we get:

P(A’ │B) = 1/4

P(B’ │B) = 1/2

P(C’ │B) = 1/4



Plinko

The numbers on the mini-Plinko
board represent the number of 
possible paths to the slot. Is the 
pattern familiar?

Let’s look at it another way…

You can transpose Pascal’s 
Triangle onto the Plinko board to 
count the paths and determine the 
probabilities.

1

1 1

1 12

3 3

3 36



Plinko

To use Pascal’s Triangle to 
count the number of paths 
from a given slot, we put the 
top of the triangle at the slot 
from which we are counting 
and then subtract 
appropriately when a chip 
hits a wall. We do this 
because the wall takes away 
one of the paths.

1

1

1

1

12

1

1

3 3 11

4
4-1=3 46 4

4-1=3



Plinko

We can also use the triangle to tell 
us the probabilities. This time we 
have to reflect the triangle numbers 
back onto the board when a chip 
hits the wall (because, as in the 
tree, the subsequent paths aren’t 
halved so they get double counted).

To get the probability for a slot, put 
the value of that slot in the 
numerator and the sum of all of the 
slot values in the denominator.

E.g., P(A’ │B) = 4/16

1

1

1

1

12

1

1

3 3 11

4 46
6+1 + 1 = 8



Plinko

When you do it for the big board, this is what you get…



Plinko

And the 
complete table 
of probabilities 
with the EV 
calculated for 
each slot…

A B C D E F G H I

A’
100

0.226 0.193 0.121 0.054 0.016 0.003 0.000 0 0

B’
500

0.387 0.346 0.247 0.137 0.057 0.016 0.003 0.000 0

C’
1000

0.242 0.247 0.241 0.196 0.121 0.054 0.016 0.003 0.000

D’
0

0.107 0.137 0.196 0.226 0.193 0.121 0.054 0.016 0.006

E’
10,000

0.032 0.057 0.121 0.193 0.226 0.193 0.121 0.057 0.032

F’
0

0.006 0.016 0.054 0.121 0.193 0.225 0.196 0.137 0.107

G’
1000

0.000 0.003 0.016 0.054 0.121 0.196 0.241 0.247 0.242

H’
500

0 0.000 0.003 0.016 0.057 0.137 0.247 0.346 0.387

I’
100

0 0 0.000 0.003 0.016 0.054 0.121 0.193 0.226

Expected 
Value

$778.10 $1012.80 $1605.10 $2262.20 $2561.70 $2262.20 $1605.10 $1012.80 $778.10

The moral of 
the story: just 
drop it in the 
middle.



Golden Balls: 
To Steal or Not to Steal



Golden Balls



Golden Balls

If you were playing Golden Balls, what should 
you do?

We’ll use a branch of mathematics known as game 
theory to provide an answer.

Game theory is the mathematical exploration of games 
and strategic behavior.



Golden Balls

A “game” is defined as an interaction containing the 
following elements:

1. There are two or more players.
2. At least one player has a choice of actions.
3. The game has a set of outcomes for each player.
4. The outcomes depend on the choices of actions by the 

players.

A “strategy” is the choice of actions.



Golden Balls

Before analyzing Golden Balls, let’s look at a related 
game: The Prisoner’s Dilemma.

Two suspects are arrested by the police. The police have separated 
both prisoners, and visit each of them to offer the following deal. If 
one testifies for the prosecution against the other and the other 
remains silent, the betrayer goes free and the silent accomplice 
receives a ten-year sentence. If both remain silent, both prisoners 
are sentenced to only one year in jail. If each accuses the other, each 
receives a five-year sentence. Each prisoner must choose to betray 
the other or to remain silent. Each one is assured that the other 
would not know about the betrayal before the end of the 
investigation. 

Which strategy should the prisoners choose? 



Golden Balls

Stay Silent Betray

Stay Silent 1,1 10,0

Betray 0,10 5,5

Prisoner B

Prisoner A

We can determine the best strategy for each prisoner by 
analyzing the possible outcomes using a payoff matrix.



Golden Balls

Stay Silent Betray

Stay Silent 1,1 10,0

Betray 0,10 5,5

Prisoner B

Prisoner A

In all cases, Prisoner A does less time if he chooses betray.

If Prisoner B chooses to stay silent, Prisoner A serves no 
time instead of one year.

If Prisoner B chooses to betray, Prisoner A serves five years 
instead of ten years.

And likewise for Prisoner B.



Golden Balls

Stay Silent Betray

Stay Silent 1,1 10,0

Betray 0,10 5,5

Prisoner B

Prisoner A

Conclusion: For both prisoners betray is the best 
strategy. 

In fact, betray is a strictly dominant strategy. That is, 
it performs better than any other strategy in every single 
case.



Golden Balls

Stay Silent Betray

Stay Silent 1,1 10,0

Betray 0,10 5,5

Prisoner B

Prisoner A

If the two prisoners are rational, they will both pick 
betray and end up in the 5,5 square. 

Both prisoners choosing the betray strategy is the Nash 
Equilibrium for this game.

A Nash Equilibrium is a set of strategies for each 
player such that no player can improve his outcome by 
unilaterally changing his strategy.



Golden Balls

Stay Silent Betray

Stay Silent 1,1 10,0

Betray 0,10 5,5

Prisoner B

Prisoner A

Interestingly, both would do better if they each chose to 
stay silent, but they can’t rationally get there.

This square is known as the Pareto optimum. A 
Pareto improvement is a change that would make at 
least one person better off without making anyone else 
worse off. If no Pareto improvement can be made, we 
say that the situation is Pareto efficient or is a Pareto 
optimum.



Golden Balls

Back to Golden Balls… What does the payoff matrix look 
like for this game?

Split Steal

Split £50k, £50k 0, £100k

Steal £100k,0 0,0

Contestant B

Contestant A



Golden Balls

Split Steal

Split £50k, £50k 0, £100k

Steal £100k,0 0,0

Contestant B

Contestant A

If contestant A steals and contestant B splits, contestant 
A wins 100k instead of 50k.

If contestant A steals and contestant B steals, contestant 
A gets the same as if she would have split. (If contestant 
B steals, contestant A has no way of getting any money.)



Golden Balls

Split Steal

Split £50k, £50k 0, £100k

Steal £100k,0 0,0

Contestant B

Contestant A

Stealing is the best strategy. In all cases it results in an 
outcome which is better than or equal to any other 
strategy.

A strategy that does this is called a weakly dominant 
strategy.



Golden Balls

Split Steal

Split £50k, £50k 0, £100k

Steal £100k,0 0,0

Contestant B

Contestant A

What is the Nash Equilibrium for this game?

The Nash Equilibrium is the set of strategies that results 
in the 0, 0 square.

What a brilliant game show for the producers—no one 
should ever win any money!



Golden Balls

Do all games have a Nash Equilibrium, that is, a set of 
optimal strategies?

Answer: All multiplayer games with finite payout 
matrices have at least one Nash Equilibrium.

Some have more than one!



Golden Balls

Consider, for example, the simple game of chicken.

Two bumper cars are speeding towards each other. Each driver can 
swerve away to avoid the collision or stay the course. If one driver 
swerves and the other does not, the one who swerved loses pride. If 
they both swerve, they both lose some pride, but not as much. If 
neither swerves, they collide and have sore necks for the rest of the 
day.

Which strategy should the drivers choose? 



Golden Balls

What does the payoff matrix look like for chicken? 

Swerve Stay

Swerve 3,3 2,4

Stay 4,2 1,1

Driver B

Driver A

For payoff amounts, we’ll just use a ranking of 1 for 
worst through 4 for best.



Golden Balls

Whether swerving or staying is better for Driver A 
depends on what Driver B does, and the same is true for 
Driver B.

Swerve Stay

Swerve 3,3 2,4

Stay 4,2 1,1

Driver B

Driver A

The 4,2 and 2,4 squares are both Nash Equilibria.



Golden Balls

Is it always best to pick one action and do it every time?
Let’s look at a game that involves repeated plays.
Consider the game of Matching Pennies:

Each of two players simultaneously shows either a head (H) or a tail 
(T). If the pennies match, one player wins both coins. If they do not 
match, then the other player wins both.

Which strategy should the players choose? 



Golden Balls

What does the payoff matrix look like for matching 
pennies? 

H T

H 1, -1 -1, 1

T -1, 1 1, -1

Player B

Player A



Golden Balls

The best outcome for Player A depends on what Player B 
does.

H T

H 1, -1 -1, 1

T -1, 1 1, -1

Player B

Player A

If Player A always plays H, then player B will start to 
always play T, and vice versa.



Golden Balls

Clearly it’s best for player A to “mix it up” and do each 
some percentage of the time.

H T

H 1, -1 -1, 1

T -1, 1 1, -1

Player B

Player A

A strategy like that is called a mixed strategy (as 
opposed to a pure strategy).



Golden Balls

Let’s say Player A chooses heads with probability p. 
Since the total probability has to add up to one, that 
means Player A chooses T with probability 1 – p.

H T

H 1, -1 -1, 1

T -1, 1 1, -1

Player B

Player A



Golden Balls

H T

H 1, -1 -1, 1

T -1, 1 1, -1

Player B

Player A

If p is greater than ½ , then Player B should always play 
T. In that case, Player A should expect to win 
value = (-1)(p) + (1)(1 – p) = – p +1 – p = 1 – 2p.

But since p is greater than ½, that means that 1 – 2p is 
negative!



Golden Balls

H T

H 1, -1 -1, 1

T -1, 1 1, -1

Player B

Player A

But since p is less than ½, that means that 2p – 1 is 
negative!

If p is less than ½ , then Player B should always play H. 
In that case, Player A should expect to win 
value = (-1)(1 – p) + (1)(p) = – 1 + p + p = 2p – 1.



Golden Balls

H T

H 1, -1 -1, 1

T -1, 1 1, -1

Player B

Player A

1 – 2p = 2p – 1
4p = 2
p =1/2

A strategy is typically optimal if the opponent can’t change their 
strategy to gain an advantage. In other words, Player B should do no 
better if she plays H or T against Player A. We can find that by 
setting the cases equal and solving for p.



Golden Balls

H T

H 1, -1 -1, 1

T -1, 1 1, -1

Player B

Player A

That’s the best Player A can do, adopt a mixed strategy of 
½ H and ½ T, and the same is true for Player B.

If p is exactly ½, then Player B can do anything and the 
value is the same, 0.



Golden Balls

Let’s consider the Prisoner’s Dilemma and Golden Balls 
again. Is there any way for the players to get the better 
result from cooperating, even though the Nash 
Equilibrium says they should not?

Answer: Not if they only play one time.



Golden Balls

This is known as a tit-for-tat strategy. 

But if they play repeatedly, then players can induce 
cooperation by setting a pattern of rewards for 
cooperation and penalties for noncooperation.



Golden Balls

Nice: The player should not defect before an opponent 
does.
Retaliating: The player should sometimes retaliate 
when the opponent defects.
Forgiving: After retaliating, the player must fall back 
into cooperating if the opponent stops defecting.
Non-envious: The player is not trying to score more 
than the opponent.

For a tit-for-tat strategy to work, it must meet several 
conditions:



Golden Balls

Otherwise it’s best for a player to defect on the last turn, 
since the opponent won’t get the chance to punish the 
player. Therefore, if both players are rational, they’ll 
both defect on the last turn. Thus the player might as 
well defect on the second-to-last last turn, since the 
opponent will defect on the last turn regardless. And so 
on.

For a tit-for-tat strategy to work, the game must also not 
last a known, finite number of turns.



Conclusion

What have we learned:

 Always switch doors on Let’s Make a Deal. Probabilities change 
with new information!

 The Deal or No Deal banker is tricky and cheap.
 Drop the Plinko chip in the middle.
 Always steal from your opponent on Golden Balls if you’re playing 

once. It’s mean, but gives the best results no matter what your 
opponent does.

 Play nice in a game like Golden Balls if you play over and over 
again. Cooperating can benefit you both.
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