Multisensory Algebra: Using Manipulatives \& the Concrete-Representational-Abstract Sequence

The NCTM 2012 Annual Meeting and Exposition Philadelphia PA

Marilyn Zecher, M.A., CALT Instructor, Math Specialist

Multisensory Training Institute of ASDEC
Rockville, MD
www.asdec.org Copyright (C) 2012 Marilyn Zecher

Multisensory Math

- Why

- Learning occurs in many parts of the brain
- But memory is highly associative
- All students benefit from hands-on instruction
- For those students with learning differences, it can provide an essential link

Why: Multisensory

- Information
- can be processed on a modality-specific basis [visual, auditory, kinesthetic etc.]
- converges and is integrated in the brain
- Performance enhancement
- is larger for multisensory than unisensory stimuli
Paul J. Laurienti, M.D., Ph.D. Department of Radiology, ANSIR, Advanced Neuroscience Imaging Research, Wake Forest University

Content From: Multisensory Math I and II The Multisensory Training Institute of ASDEC

Meaning:

- The more of the brain that is involved
- The stronger the associations
- The stronger the implications for learning \& memory

Manipulatives Must Be. . .

- Efficient
- For the concept being taught
- Effective
- At illustrating the concept
- Reproducible/ Retrievable
- In memory, making the concept visualization portable

Multisensory Mathematics

- Addresses the needs of all students
- Uses manipulatives to teach, enhance, integrate and reinforce concepts
- Is research based
- Adapts to any curriculum and to the implementation of common core standards

CRA: An Instructional Sequence

- Concrete: Illustrates the concept
- using hands-on instruction, manipulatives
- Representational: Pictorial,
- illustrates the concept in a retrievable or reproducible format
- Abstract: Uses only numerals, computational algorithms

Content From: Multisensory Math I and II

 The Multisensory Training Institute of ASDEC
At All Levels of Math Instruction

- One study of algebra students - found that those who used manipulatives in specific math applications
-"outperformed peers receiving traditional instruction on both postinstruction and follow-up tests." Bradley S. Witzel, Cecil D. Mercer, M. David Miller (2003) Learning Disabilities Research \& Practice 18 (2), 121-131

The Multiplication Shuffle

- In quantity comparison, addition/subtraction, estimation...
- activation is in both hemispheres w/ slight preference for the right (nonlanguage) hemisphere.

Blakemore, Sarah-Jayne; Frith, Uta; (2005) The Learning Brain, Lessons for Education, Malden MA, Blackwell Publishing

Math Deficits

- Numeracy: Ability to recognize quantity and/or quantity relationships
- This is perhaps a core deficit leading to math disabilities - Dehaene
- Language Processing: Difficulty in the organization of, memory for, retrieval of, expression of language of arithmetic

Shaywit, et al

- Processing Speed
- Dial Up

Implications from Research

- "During multiplication, brain activity shifts toward the left/language hemisphere. [language]
- This fits with the notion that multiplication is dependent on regions in the L.H. associated with language"
Sarah-Jayne Blakemore \& Uta Frith, The Learning Brain: Lessons for Education, 2005 Blackwell Publishing, Malden MA

CRA

- LD students "needed an average of three experiences at the concrete level before moving on to the representational level (1993)."

Flores, Margaret: Using the Concrete-Representational-Abstract Sequence to Teach Subtraction With Regrouping to Students at Risk for Failure, Remedial and Special Education Volume XX Number X February 2009

Pre-Algebra

- Positive \& Negative Numbers
- Craft sticks
- Images and concept verbalization Non-math examples
- Number lines - with wrapping paper rolls and unifix cubes
- Properties of Real Numbers
- Unifix Cubes

Content From: Multisensory Math I and II The Multisensory Training Institute of ASDEC Rockville, MD www.asdec.org 301-762-2414

Manipulatives: Pre-Algebra

- Vocabulary \& Concepts
- Prime \& Composite Numbers
- Factors \& Multiples
- Prime Factorization
- Mean
- Craft Sticks
- Pipe cleaners or strings \& beads

Make Math Meaningful

- Link math concepts to non-math examples if it clarifies meaning or vocabulary.
- Memory is highly associative.

Functions and $\mathrm{f}(\mathrm{x})$ Notation

- Non-math examples
- Linear Functions \& Vocabulary
- Unifix Cubes
- Modeling real life story problems and solving them with manipulatives
- Polynomial Functions
- Vocabulary
- Base Ten Blocks - Multiplication, Division, Factoring
Translations

What do we mean by Negative?

- How much dirt is in a hole 2 feet by 4 feet by 4 feet?

Common Factor?

$$
\begin{aligned}
& \text { (blond man + blond girl + blond dog) } \\
& \text { Greatest Common/Shared Factor is "Blond" } \\
& \text { (blond man + blond girl + blond dog) = } \\
& \text { blond (man + girl + dog) }
\end{aligned}
$$

Linking the Known to the New

- Multiplication \& Exponential Growth
- Unifix Cubes
- Dry beans in cups or bowls
- Perfect Squares and Roots
- Base Ten Blocks
- Multiplication Arraysmodified to illustrate squares
- Graphic Organizers

Content From: Multisensory Math I and II The Multisensory Training Institute of ASDEC Rockville, MD www.asdec.org 301-762-2414

Known to New

- Multiplication
- Expanded Notation
- Mental Math
- Place Value Based Multiplication
- Foil or Box
- Polynomial operations
- Operations with radicals or imaginary/ complex numbers

Activity

- Using the array
- Multiply a two digit number by a two digit number in expanded notation form
- Map that onto a "box" mechanism
- Discover the partial products

Build Algebra Skills Early

- Model partial products with arrays
- Transition to the abstract

$12 \times 114=(10+2)(100+10+4)$
\qquad

Content From: Multisensory Math I and II The Multisensory Training Institute of ASDEC

Factoring

- In division
- Assemble the dividend
- Align blocks w/ the
divisor
- Discover the quotient
- Discover the "left overs" or remainder
- In factoring
- Assemble the product
- Discover the factors

To the
Abstract

- Link polynomials to expanded notation
- Combine
"like" terms
on the
diagonals
$5 \times 37=5(30+7)=185$

\[

\]

$12 \times 114=(10+2)(100+10+4)$

$(x+5)\left(x^{2}+3 x-2\right)$

Content From: Multisensory Math I and II The Multisensory Training Institute of ASDEC
Rockville, MD www.asdec.org 301-762-2414

Repetition and Linkages

- The Parent Function
- Coding: Recognizing a pattern, labeling for meaning and applying to a useful purpose.
- Tracking
- Pipe cleaner \& bead

Summary

- CRA
- Concrete: concept
- Representation: Retrievable Memory
- Abstract: Computations
- Manipulatives
- Efficient, Effective, Essential

The Multisensory Training Institute

- Dedicated to certifying Academic Therapists and training teachers, tutors \& parents
- In research based methods for helping students with learning differences
- www.asdec.org
- The Atlantic Seaboard Dyslexia Education Center
- 22 W. Jefferson St Rockville MD 20850
- 301-762-2414

Content From: Multisensory Math I and II

 The Multisensory Training Institute of ASDEC Rockville, MD www.asdec.org 301-762-2414