

First Steps in Mathematics

How Can We Improve Students' Success with Algebra?

NCTM 2012

Improving the mathematics outcomes of students

STEPS Professional Development

www.stepspd.com info@stepspd.com 866-505-3001

Key Understandings

Teachers will need to plan learning experiences that include and develop the following Key Understandings (KU). These Key Understandings underpin achievement of the outcome. The learning experiences should connect to students' current knowledge and understandings rather than to their year level.

Key Understanding	Stage of Primary Schooling— Major Emphasis	KU Description	Sample Learning Activities
 KU1 Adding and subtracting numbers are useful when we: change a quantity by adding more or taking some away think of a quantity as combined of parts equalise or compare two quantities 	Beginning VVV Middle VVV Later V	page 12	Beginning, page 14 Middle, page 16 Later, page 18
KU2 Partitioning numbers into part-part-whole helps us relate addition and subtraction and understand their properties.	Beginning VVV Middle VVV Later VV	page 20	Beginning, page 22 Middle, page 24 Later, page 26
 KU3 Multiplying numbers is useful when we: repeat equal quantities use rates make ratio comparisons or changes, e.g. scales make arrays and combinations need products of measures. 	Beginning VV Middle VVV Later VVV	page 28	Beginning, page 30 Middle, page 32 Later, page 34
 KU4 Dividing numbers is useful when we: share or group a quantity into a given number of portions share or group a quantity into portions of a given size need the inverse of multiplication. 	Beginning VV Middle VVV Later VVV	page 40	Beginning, page 42 Middle, page 44 Later, page 46
KU5 Repeating equal quantities and partitioning a quantity into equal parts helps us relate multiplication and division and understand their properties.	Beginning VV Middle VVV Later VVV	page 52	Beginning, page 54 Middle, page 56 Later, page 58
KU6 The same operation can be said and written in different ways.	Beginning 🗸 🗸 Middle 🗸 🗸 Later 🗸 🗸	page 62	Beginning, page 63 Middle, page 64 Later, page 65
KU7 Properties of operations and relationships between them can help us to decide whether number sentences are true.	Beginning 🗸 Middle 🗸 Later 🗸	page 66	Beginning, page 68 Middle, page 69 Later, page 71
KU8 Thinking of a problem as a number sentence often helps us to solve it. Sometimes we need to rewrite the number sentence in a different but equivalent way.	Beginning V Middle VV Later VVV	page 74	Beginning, page 76 Middle, page 77 Later, page 79
KU9 We make assumptions when using operations. We should check that the assumptions make sense for the problem.	Beginning 🗸 Middle 🗸 🗸 Later 🗸 🗸	page 82	Beginning, page 84 Middle, page 85 Later, page 86

Key

VVV The development of this Key Understanding is a major focus of planned activities.

In the development of this Key Understanding is an important focus of planned activities.

Some activities may be planned to introduce this Key Understanding, to consolidate it, or to extend its application. The idea may also arise incidentally in conversations and routines that occur in the classroom.

KEY UNDERSTANDING 2

Partitioning numbers into part-part-whole helps us relate addition and subtraction and understand their properties.

A quantity, while being thought of as a whole, can also be thought of as composed of parts. That is:

The part-part-whole relationship shows how addition and subtraction are related, with subtraction being the inverse of addition. If the whole quantity is unknown, addition is required. If one of the other quantities is unknown, subtraction is required. This enables students to see *why* a problem that they think of as about adding, but with one of the addends unknown, could be solved by subtracting or vice-versa. (See Key Understanding 7, page 66, and Background Notes, page 91.) Linking the joining and separating of the parts that make the whole to a variety of situations also helps students to see *why* subtraction can be used to solve a take-away problem and also a comparison problem. Understanding part-part-whole relationships to represent a problem in different ways, so they can choose the most helpful.

The part-part-whole relationship is also the key to students seeing *why* addition is commutative and *why* subtraction is not. The commutativity of addition is of obvious practical use in calculating, but knowing that, and understanding why, addition is commutative and subtraction is not, helps students represent word problems with appropriate addition and subtraction sentences.

Students who have achieved Level 1 of the outcome can solve simple addition and subtraction problems for whole numbers, mostly by modelling strategies (see Key Understanding 1, page 12, and Background Notes, page 89). However, they may not link addition to subtraction or the types of subtraction to each other. At Level 2 they link the types of addition (from Key Understanding 1) to the part-part-whole idea and so understand why the addition symbol works in each case.

Similarly, they link subtraction types to the part-part-whole idea and to the subtraction symbol. With the aid of diagrams, they can use part-part-whole relationships to link addition to subtraction and so, given $16 + \square = 34$, they could work out a related subtraction and so find the 'hidden number' on their calculator.

At Level 3, students use the inverse relationship between addition and subtraction routinely for large whole numbers, e.g. they readily say that if 35 + 65 = 100, then 100 - 65 *must be* 35, although they may still rely on imagining it in diagrams. At Level 4 this relationship has been generalised so that students can use the inverse relationship in an abstract way for any numbers including decimals and fractions. Students at Level 5 can use the relationship to solve more abstract 'algebraic' problems such as: half my number, add one, is 43, what is my number?

2d	
	NS:
100	1 X III
APP-	CALL IN THE PARTY
1. J	belling the second
1977	
Y	S min min 1
1	
	TE MILLIN LUIA
	ferman Al
	TRANSVEV
4	TRAVI
9	
1	
	TO
11/10	B. mon with 1
5.	43 MM "1
3 . 1	
en an	
ut y	TS MILL
	Al mill
	Trans I
	TEMP
	Ellenter
	2 Dector
	S P
	a and b
	A C
	Q

34.

Number
Map:
iagnostic ,
\cap

ase

(i.e. misconceptions, pre- and

a result of having made the shift in thinking

conceptual shift in thinking during the phase

Page 5

partial concepts)

Diagnostic Map: Number		Most students will enter the Matching phase between 3 and 5 years of age.
uring the Emergent Phase	By the end of the Emergent phase, students	As students move from the Emergent phase
tudents reason about small amounts of	typically:	to the Matching phase, they:
hysical materials, learning to distinguish small	• use 'bigger', 'smaller' and 'the same' to describe	 may actually see at a glance how many there are in
ollections by size and recognising increases	differences between small collections of the like objects	a small collection (e.g. six pebbles), yet may not be
nd decreases in them. They also learn to	and between easily compared quantities	able to say the number names in order
contract the number words used in	 anticipate whether an indicated change to a 	• may say a string of the number names in order (one,
or commutive and to distinguish muchor	collection or quantity will make it bigger, smaller or	two, three, four,), but not connect them with how
	leave it the same	many are in collections
/mbols trom other symbols. Ihere is a growing	 distinguish spoken numbers from other spoken words 	 may be beginning to see how to use the number
ecognition of what is the same about the way	 distinguish numerals from other written symbols 	names to count, but may get the order of the names
udents' communities use numbers to describe	 see at a glance how many are in small collections 	wrong
ollections and what is different between	and attach correct number names to such collections	 may distribute items or portions in order to 'share',
ollections labelled with different numbers	 connect the differences they see between collections 	but may not be concerned about whether everyone
	of one, two, and three with the number string: 'one,	gets some, the portions are equal or the whole amount
s a result, students come to understand mat	two, three,'	is used up
umber words and symbols can be used to	 understand a request to share in a social sense and 	 can tell by looking which of two small collections is
gnify the 'numerosity' of a collection.	distribute items or portions.	bigger; however, they generally cannot say how much
<	<	bigger.
	Indicators that show what	Describes the learning
Describes students' major	students know or can do as	challenges for the next phase

© STEPS Professional Development 2010

		How Muc	h Taller?	
Name	James		Year lev	el <u>5</u>
Jesse ani tall and S said, Yes How muc Explain h height the o Write a nu	d Sylvia were o sylvia said she s, but not by mu th taller is Jess ow you worked an SWEV umber senteno	chatting on the net was 132cm tall. J uch. te than Sylvia? d out the answer. M M M M te that you could us	Jesse said that she esse said I'm taller th 22 cm Subtracted 25 height se in a calculator to w	vwas 154cm ian you. Sylvia - Sylvias to get iork it out.

Name <u>Tanya</u>	Yearlevel 5
Josso and Sylvia were chatting o tail and Sylvia said she was 132 said, Yes, but not by much. How much tailer is Josse than Sy Splain how you worked out tha If Jesse is touller th Worked it out.	on the not. Jesse said that she was 154cm om tail. Jesse said I'm tailer than you. Sylvia ywa? 22cm taller enswer. han Sylvia She is 22 cms taller. by counting it on my
fingers.	3 3
Write a number sectence that y If you could have goes between it	a could use in a calculator to work it out. C a guess of which number , you mght be right that's
132	27/1
154	

FOCUS Understand Operations • Key Understanding 2

Empty Boxes

Years/Grades 5–7

Purpose

To see whether students are able to use the inverse relationship between addition and subtraction to solve open number problems.

Producing work samples

Individual interview, small group or whole class

- Explain to students that they are to write what they would put into a calculator to solve the problem, rather than just the answer.
- Do not allow students to use calculators for this task.

If using this as a whole class task, follow-up interviews to clarify what some students are thinking may be necessary.

lame	_ Year/Grade	Date	
------	--------------	------	--

What numbers and symbols would you use on the calculator to solve the following problems?

Name: <u>Jake</u> Year/Grade: <u>8th Grade</u>

What numbers and symbols would you used on the calculator to solve the following problems?

Julieana Year/Grade: 8th Grade Name:

What numbers and symbols would you used on the calculator to solve the following problems?

Name: Nataly Year/Grade: 8th Grade

What numbers and symbols would you used on the calculator to solve the following problems?

