TEACHER'S PEDAGOGICAL CONTENT KNOWLEDGE AND STUDENT'S UNDERSTANDING OF INTEGER OPERATIONS

Sarah Brasiel, Edvance Research, Inc. Stephanie Peacock, The University of Texas at Austin Developing and testing a theory for improving teacher and student understanding of integers

Why integer operations?

- Foundational Mathematic Concept
- Applications in STEM fields
- Impacts accuracy of solution to many problems
- Mathematics Ed community hasn't found an instructional model that works

Models for Teaching Integer Operations

Pilot Study- May 2008

- Structured interviews
- Students in grade 7, 9, 11
- Given an integer operation expression, how would you solve it?

Overall Percent Accuracy of Integer Arithmetic

Accuracy	Grade 7 (<i>n</i> = 21)	Grade 9 (<i>n</i> = 24)	Grade 11 (<i>n</i> = 20)	Total $(n = 65)$
-5 + 8 = 3	62	100	60	74
-3 + -6 = -9	57	79	45	60
2-7=-5	19	63	45	42
-3-5=-8	19	25	35	26
$-4 \ge 5 = -20$	76	75	75	75
Total	47	68	55	57 ₆

Grade 7 Student

-5 + 8 = ?

7th grade student response: *"I used this*" (points to Pie Man)

"Negative and positive, I went like this" (Student covered the negative and positive signs with two fingers)

"and then you have a negative"

Pie Man

Theoretical Framework

Pedagogical Content Knowledge (PCK)

- Mathematics
- Representations
- Student's thinking
- Decision Making

 Clarifying examples and counter examples

Argumentation

Reasoning

 Justifying their thinking

- Making claims and warrants
- Classroom Norms

PROFESSIONAL DEVELOPMENT July 2010 (6hrs)

- Real world contexts
- Number line vector representation
- Student misconceptions
- Promoting productive classroom discourse

IMPROVED TEACHER PCK July 2010 (3 wks)

- Implement activities with real world connections
- Implement number line vector model activities
- Facilitate and encourage classroom discourse and argumentation

IMPROVED STUDENT UNDERSTANDING July 2010 (3 wks)

- Model integer
 operations number
 line
- Make connections between different models
- Use argumentation to make claims and warrants for a particular solution and solution strategy

Theory of Change

Summer Program

- Grade 8 Students who had not passed the state assessment in mathematics
- Requirement to be promoted to grade 9
- □ 14 days, 9:15-1:45pm
- Program started in 2008
- Curriculum focus:
 - Generalizing Patterns using Algebra
 - Positive and Negative Numbers

Curriculum

America's Choice Navigator
 Generalizing Patterns
 Positive and Negative Numbers

- 60 minute lessons and activities
 - Misconceptions
 - Student discourse

Subtraction and Multiplication

-4 - 5 = -9 $4 \times (-2) = -8$

- Purpose of negative numbers
- Comprehensive
- Prepares students for higher math and science

Summer Program 2009

13

Topics:	Pretest (<i>n</i> = 206)	Posttest (<i>n</i> = 242)	Growth (<i>n</i> = 177)
Positive & Negative Numbers	43%	49%	+6%
Patterns	40%	50%	+10%

Modified Summer Program with a Focus on Conceptual Understanding and Argumentation

Argumentation (90%)

Teacher Talk (10%)

Addition of TI-73 Calculator NumLine Activities

15

Research Question #1

What are the general patterns of teacher PCK related to integer operations?

Percent of Teachers Who Achieved Ratings

	Questions:	Pre-test Ratings		ngs
17	(Note: 0 points for incorrect or no response, 1	(<i>n</i> = 18 teachers)		ers)
	point for partially correct response, 2 points for complete correct response)	0	1	2
	Explain the solution of 5 – (-8)?	50	33	17
	Given -5 x (-8). Why does the answer have the sign it does?	72	17	11
	(-6) + (+7) and 6 – (+7) read incorrectly	22	28	50
	4 – 7 = 3, what is the misconception and what is a teaching strategy	6	44	50
	Is 3 –5 the same as 3 + (-5)?	61	28	11
	Prior experience with argumentation in class	33	28	39
	Real world and domain applications	11	72	17

Research Question #2

To what extent did PD change teacher PCK ?

Pretest Posttest

Note: Difference is statistically significant at p < .01

Teacher Pedagogical Content Knowledge (*n* = 18**)**

CHANGE IN TEACHER UNDERSTANDING OF INTEGER OPERATIONS

Question	Pretest	Posttest	Difference	t	<i>p</i> -value
(N = 18 teachers)	Mean	Mean	(SE)		
	(SD)	(SD)			
Q1. 5-(-8)	.67	1.11	.44	1.41	.18
	(.77)	(.96)	(.32)		
Q25 x (-8)	.39	1.00	.61	2.37	.03*
	(.70)	(.97)	(.26)		
Q3. (-6) + (+7),	1.28	1.83	.56	3.34	<i>p</i> < .01
6-(+7)	(.83)	(.38)	(.17)		
Q4. $4 - 7 = 3$	1.44	1.61	.17	1.37	.19
	(.62)	(.61)	(.12)		
Q5. $3-5$, $3+(-5)$.50	.89	.39	1.94	.07
	(.71)	(.68)	(.20)		
Q6. Prior use of	1.06	1.22	.17	.83	.42
Argumentation	(.87)	(.88)	(.20)		
Q7. Applications	1.06	1.33	.28	2.55	.02*
D	(.54)	(.59)	(.11)		

20

Research Question #3

21

Is there a statistically significant difference between Jumpstart 2010 and Jumpstart 2009 in student performance?

Hierarchical Linear Model (HLM) for 2009 vs. 2010 Comparison

Level-1 Model $Y_{ij} = \beta_0 + r_{ij}$ Level-2 Model $\beta_0 = \gamma_{00} + \gamma_{10}$ (YEAR) u_{0j}

Y_{ij} was used to represent each outcome measure (pretest and posttest) and the change in score of students between preand posttest.

2009 vs. 2010

ſ

Percent	2010 Mean	2009 Mean	Difference	t	<i>p</i> -value
Correct	(<i>n</i> =177)	(<i>n</i> = 177)	(SE)		
out of 100	(SD)	(SD)			
Pre-test	37	43	-7	-1.77	.08
	(17)	(19)	(4)		
Posttest	51	49	2	.41	.68
	(15)	(21)	(4)		
Improvement	14	06	8	2.20	.03*
	(17)	(19)	(3)		
*Statistically si	• (• • • • •				

*Statistically significant at the p < .05 level.

Research Question #4

25

Do differences in teacher PCK explain more of the variance in student performance than years teaching experience?

HLM Analysis to Model Posttest Fully Conditional Model

Level-1 Model

 $Y_{ij} = \beta_0 + \beta_1^*$ (Student Pretest) + r_{ij} Level-2 Model

 $\beta_0 = \gamma_{00} + \gamma_{01}^* \text{(Teacher Experience)} + \gamma_{02}^* \text{(Teacher PCK Pretest)} + \gamma_{03}^* \text{(Teacher PCK Posttest)} + u_{0j}$

 $\beta_1 = \gamma_{10}$

 Y_{ij} is the posttest score of student *i* in class *j*

Percent of Level-2 (teacher) Variance in Student Knowledge

Controlling for prior student and teacher knowledge as well as teacher experience, teacher's pedagogical content knowledge (PCK) significantly predicted student posttest performance (p=.033) (1 pt increase in PCK, .22 increase in student performance)

Implications for Future Directions

> Implications for Equity for All Students

- Focus on conceptual development not activities
- Focus on argumentation
- PD for in-service and pre-service teachers
- Measuring PCK
- Supporting teachers in using argumentation in the classroom

Part 4: Questions & Discussion