TEACHER'S PEDAGOGICAL CONTENT KNOWLEDGE AND STUDENT'S UNDERSTANDING OF INTEGER OPERATIONS

Developing and testing a theory for improving teacher and student understanding of integers

July 2010
Summer
Program

341 students

22 teachers

MODIFIED
PD (6 hrs of the 2 days)

Why integer operations?

\square Foundational Mathematic Concept
\square Applications in STEM fields
\square Impacts accuracy of solution to many problems
\square Mathematics Ed community hasn't found an instructional model that works

Models for Teaching Integer Operations

Annihilation model

Number line

Elevation or
Elevator

Metaphors

Real World
Application

Pilot Study- May 2008

\square Structured interviews

- Students in grade 7, 9, 11
\square Given an integer operation expression, how would you solve it?

Overall Percent Accuracy of Integer Arithmetic

Accuracy	Grade 7 $(n=21)$	Grade 9 $(n=24)$	Grade 11 $(n=20)$	Total $(n=65)$
$-5+8=3$	62	100	60	74
$-3+-6=-9$	57	79	45	60
$2-7=-5$	19	63	45	42
$-3-5=-8$	19	25	35	26
$-4 \times 5=-20$	76	75	75	75
Total	47	68	55	57

Grade 7 Student

 $-5+8=?$
$7^{\text {th }}$ grade student response: "I used this" (points to Pie Man)
"Negative and positive, I went like this" (Student covered the negative and positive signs with two fingers)
"and then you have a negative"

Theoretical Framework

Pedagogical Content Knowledge (PCK)
\square Mathematics
\square Representations
\square Student's thinking
\square Decision Making
\square Clarifying examples and counter examples

Argumentation

\square Reasoning
\square Justifying their thinking
\square Making claims and warrants
\square Classroom Norms

PROFESSIONAL DEVELOPMENT July 2010 (6hrs) - Real world contexts - Number line vector representation - Student misconceptions - Promoting productive classroom discourse	IMPROVED TEACHER PCK July 2010 ($\mathbf{3} \mathbf{w k s}$) - Implement activities with real world connections - Implement number line vector model activities - Facilitate and encourage classroom discourse and argumentation	

Theory of Change

Summer Program

\square Grade 8 Students who had not passed the state assessment in mathematics
\square Requirement to be promoted to grade 9
$\square 14$ days, 9:15-1:45pm
\square Program started in 2008
\square Curriculum focus:
\square Generalizing Patterns using Algebra
\square Positive and Negative Numbers

Curriculum

\square America's Choice Navigator
\square Generalizing Patterns
\square Positive and Negative Numbers

60 minute lessons and activities

- Misconceptions
- Student discourse

Subtraction and Multiplication

$$
-4-5=-9
$$

$4 \times(-2)=-8$

- Purpose of negative numbers
- Comprehensive
- Prepares students for higher math and science

Summer Program 2009

Topics:	Pretest $(n=206)$	Posttest $(n=242)$	Growth $(n=177)$
 Negative Numbers	43%	49%	$+6 \%$
Patterns	$\mathbf{4 0 \%}$	50%	$+\mathbf{1 0 \%}$

Modified Summer Program with a Focus on Conceptual Understanding and Argumentation

Argumentation (90\%)

Addition of TI-73 Calculator NumLine Activities

Research Question \#1

\square What are the general patterns of teacher PCK related to integer operations?

Percent of Teachers Who Achieved Ratings

Questions:	Pre-test Ratings		
(Note: 0 points for incorrect or no response, 1	($n=18$ teachers)		
point for partially correct response, 2 points for complete correct response)	0	1	2
Explain the solution of 5-(-8)?	50	33	17
Given $-5 \times(-8)$. Why does the answer have the sign it does?	72	17	11
$(-6)+(+7)$ and $6-(+7)$ read incorrectly	22	28	50
4-7=3, what is the misconception and what is a teaching strategy	6	44	50
Is 3-5 the same as $3+(-5)$?	61	28	11
Prior experience with argumentation in class	33	28	39
Real world and domain applications	11	72	17

Research Question \#2
\square To what extent did PD change teacher PCK ?

Teacher Pedagogical Content Knowledge ($n=18$)

Change in Teacher Understanding of Integer Operations

Question ($\mathrm{N}=18$ teachers)	Pretest Mean (SD)	Posttest Mean (SD)	Difference (SE)	t	p-value
Q1. 5-(-8)	$\begin{gathered} \hline .67 \\ (.77) \end{gathered}$	$\begin{aligned} & 1.11 \\ & (.96) \end{aligned}$	$\begin{gathered} .44 \\ (.32) \end{gathered}$	1.41	. 18
Q2. $-5 \times(-8)$	$\begin{gathered} .39 \\ (.70) \end{gathered}$	$\begin{aligned} & \hline 1.00 \\ & (.97) \end{aligned}$	$\begin{gathered} .61 \\ (.26) \end{gathered}$	2.37	.03*
$\begin{gathered} \hline \text { Q3. }(-6)+(+7), \\ 6-(+7) \end{gathered}$	$\begin{aligned} & \hline 1.28 \\ & (.83) \end{aligned}$	$\begin{aligned} & 1.83 \\ & (.38) \end{aligned}$	$\begin{gathered} .56 \\ (.17) \end{gathered}$	3.34	$p<.01$
Q4. $4-7=3$	$\begin{aligned} & \hline 1.44 \\ & (.62) \end{aligned}$	$\begin{aligned} & 1.61 \\ & .61) \end{aligned}$	$\begin{gathered} \hline .17 \\ (.12) \end{gathered}$	1.37	. 19
Q5. 3-5, 3+(-5)	$\begin{gathered} .50 \\ (.71) \end{gathered}$	$\begin{gathered} .89 \\ (.68) \end{gathered}$	$\begin{gathered} \hline .39 \\ (.20) \end{gathered}$	1.94	. 07
Q6. Prior use of Argumentation	$\begin{aligned} & \hline 1.06 \\ & (.87) \end{aligned}$	$\begin{aligned} & 1.22 \\ & (.88) \end{aligned}$	$\begin{gathered} \hline .17 \\ (.20) \end{gathered}$. 83	. 42
Q7. Applications	$\begin{aligned} & 1.06 \\ & (.54) \end{aligned}$	$\begin{aligned} & 1.33 \\ & . .59) \end{aligned}$	$\begin{gathered} \hline .28 \\ (.11) \end{gathered}$	2.55	.02*

Research Question \#3

\square Is there a statistically significant difference between Jumpstart 2010 and Jumpstart 2009 in student performance?

Hierarchical Linear Model (HLM) for 2009 vs. 2010 Comparison

Level-1 Model

$$
Y_{i j}=\beta_{0}+r_{i j}
$$

Level-2 Model

$$
\beta_{0}=\gamma_{00}+\gamma_{10}(\mathrm{YEAR}) u_{0 j}
$$

$Y_{i j}$ was used to represent each outcome measure (pretest and posttest) and the change in score of students between preand posttest.

2009 vs. 2010

Percent Correct out of 100	2010 Mean $(n=177)$ $(S D)$	2009 Mean $(n=177)$ $(S D)$	Difference (SE)	t	p-value
Pre-test	37	43	-7	-1.77	.08
	(17)	(19)	(4)		
Posttest	51	49	2	.41	.68
	(15)	(21)	(4)		
Improvement	14	06	8	2.20	$.03^{*}$
	(17)	(19)	(3)		
*Statistically significant at the $p<.05$ level.					

Research Question \#4

\square Do differences in teacher PCK explain more of the variance in student performance than years teaching experience?

HLM Analysis to Model Posttest Fully Conditional Model

Level-1 Model
$Y_{i j}=\beta_{0}+\beta_{1}{ }^{*}$ (Student Pretest) $+r_{i j}$
Level-2 Model
$\beta_{0}=\gamma_{00}+\gamma_{01}{ }^{*}$ (Teacher Experience) + $\gamma_{02}{ }^{*}$ (Teacher PCK Pretest) $+\gamma_{03}{ }^{*}$ (Teacher PCK Posttest) $+u_{0 j}$
$\beta_{1}=\gamma_{10}$
$Y_{i j}$ is the posttest score of student i in class i

Percent of Level-2 (teacher) Variance in Student Knowledge

Controlling for prior student and teacher knowledge as well as teacher experience, teacher's pedagogical content knowledge (PCK) significantly predicted student posttest performance ($p=.033$) (1 pt increase in PCK, .22 increase in student performance)

Implications for Future Directions

> Implications for Equity for All Students

- Focus on conceptual development not activities
- Focus on argumentation

PD for in-service and pre-service teachers
> Measuring PCK
> Supporting teachers in using argumentation in the classroom

Part 4: Questions \& Discussion

