Visualizing Systems of Equations

GeoGebra

Ana Escuder
Florida Atlantic University aescuder@fau.edu

Duke Chinn
Broward County Public Schools james.chinn@browardschools.com

Free mathematics software for learning

GeoGebra

 and teachingwww.geogebra.org

\checkmark Graphics, algebra and tables are connected and fully dynamic
\checkmark Easy-to-use interface, yet many powerful features
\checkmark Authoring tool to create interactive learning materials as web pages
\checkmark Available in many languages for millions of users around the world
\checkmark Free and open source software

System of Linear Equations

An 8-pound mixture of M\&M's and raisins costs $\$ 18$. If a lb. of M\&M's costs $\$ 3$, and a lb. of raisins costs $\$ 2$, then how many pounds of each type are in the mixture?
$x \rightarrow$ Ibs of M\&M's
$Y \rightarrow$ Ibs of raisins

$$
\left\{\begin{array}{l}
x+y=8 \\
3 x+2 y=18
\end{array}\right.
$$

Gauss' Method of Elimination

If a linear system is changed to another by one of these operations:
(1) Swapping - an equation is swapped with another
(2) Rescaling - an equation has both sides multiplied by a nonzero constant
(3) Row combination - an equation is replaced by the sum of itself and a multiple of another
then the two systems have the same set of solutions.

Restrictions to the Method

- Multiplying a row by 0
\checkmark that can change the solution set of the system.
- Adding a multiple of a row to itself
\checkmark adding -1 times the row to itself has the effect of multiplying the row by 0 .
- Swapping a row with itself
\checkmark it's pointless.

Example

$$
\left\{\begin{array}{l}
x+y=8 \\
3 x+2 y=18
\end{array}\right.
$$

\checkmark Multiply the first row by -3 and add to the second row.
\checkmark Write the result as the new second row

$$
\begin{aligned}
-3 x-3 y & =-24 \\
3 x+2 y & =18 \\
\hline-y & =-6
\end{aligned} \quad\left\{\begin{array}{l}
x+y=8 \\
-y=-6
\end{array}\right.
$$

Example (Cont) $\left\{\begin{array}{l}x+y=8 \\ -y=-6\end{array}\right.$
\checkmark Add the two rows to eliminate the \boldsymbol{y} in the first row
\checkmark Write the result as the new first row $\left\{\begin{array}{l}x=2 \\ -y=-6\end{array}\right.$
\checkmark Multiply the second row by -1
$\left\{\begin{array}{lc}x+y=8 & \text { Changed } \\ 3 x+2 y=18 & \text { to }\end{array}\left\{\begin{array}{l}x=2 \\ y=6\end{array}\right.\right.$

Possible Types of Solutions

Unique
solution

General Behavior of Linear Combination

- If solution exists - the new line (row combination) passes through the point of intersection (solution).
- If no solution - the new line is parallel to the other lines
- If infinite solutions - the new line overlaps the other two.

In General...

$$
\left\{\begin{array}{l}
a x+b y=c \\
d x+e y=f
\end{array} \quad\left(\begin{array}{ll|l}
a & b & c \\
d & e & f
\end{array}\right)\right.
$$

Assuming a, b, c, d are not equal to 0

Unique solution if: $\quad a e-b d \neq 0$

Possibilities with Systems of equations in 3 Variables

- Unique solution
- A point

> Solving a System of Equations $\quad\left\{\begin{array}{l}1 x+1 y+2 z=8 \\ -1 x-2 y+3 z=1 \\ 3 x-7 y+4 z=10\end{array}\right.$
\(\left(\begin{array}{rrr|r}1 \& 1 \& 2 \& 8

-1 \& -2 \& 3 \& 1

3 \& -7 \& 4 \& 10\end{array}\right) \quad\)| R1 + R2 |
| :--- |
| Replace row 2 |

$\left(\begin{array}{rrr|r}1 & 1 & 2 & 8 \\ 0 & -1 & 5 & 9 \\ 3 & -7 & 4 & 10\end{array}\right)$

The new plane (blue) is parallel to the x-axis

$$
\left(\begin{array}{ccc|c}
1 & 0 & 7 & 17 \\
0 & -1 & 5 & 9 \\
3 & -7 & 4 & 10
\end{array}\right) \quad\left(\begin{array}{ccc|l}
1 & 0 & 7 & 17 \\
0 & -1 & 5 & 9 \\
0 & 7 & 17 & 41
\end{array}\right)
$$

R1*3-R3
Replace row 3

Green plane is now parallel to the x-axis

$$
\begin{aligned}
& \left(\begin{array}{rrr|r}
1 & 0 & 7 & 17 \\
0 & -1 & 5 & 9 \\
0 & 0 & 1 & 2
\end{array}\right) \quad\left(\begin{array}{lll|l}
1 & 0 & 7 & 17 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right) \\
& \text { R3*5 - R2 } \\
& \text { Replace row } 2 \\
& \text { Blue plane is perpendicular } \\
& \text { to the } y \text {-axis }
\end{aligned}
$$

$$
\begin{array}{cc|c}
\left(\begin{array}{lll|l}
1 & 0 & 7 & 17 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right) & \left(\begin{array}{ccc|c}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right) \\
\begin{array}{c}
\text { R1-R3*7 } \\
\text { Replace row } 1
\end{array} & \begin{array}{c}
\text { Red plane perpendicular to } \\
\text { the x-axis }
\end{array}
\end{array}
$$

New Equivalent System

$\left\{\begin{array}{l}1 x+1 y+2 z=8 \\ -1 x-2 y+3 z=1 \\ 3 x-7 y+4 z=10\end{array} \quad\right.$ To $\quad\left\{\begin{array}{l}1 x=3 \\ 1 y=1 \\ 1 z=2\end{array}\right.$

What is the solution?

$$
\left\{\begin{array}{l}
2 x+3 y-4 z=-11 \\
5 x+5 y+5 z=6 \\
-6 x-9 y+12 z=-14
\end{array}\right.
$$

Two parallel planes intersected by a third plane

$$
\begin{aligned}
& \text { What is the solution? } \\
& \qquad\left\{\begin{array}{l}
-2 x+3 y+5 z=2 \\
4 x-6 y-10 z=8 \\
x-1.5 y-2.5 z=-3
\end{array}\right.
\end{aligned}
$$

Three parallel planes

What is the solution?

$$
\left\{\begin{array}{l}
3 x+2 y-z=10 \\
x+4 y+2 z=3 \\
4 x-24 y-20 z=4
\end{array}\right.
$$

Three non-parallel planes that form a type of triangle

Information

- Downloading GeoGebra 5.0
- Construction of ggb files

Uploaded in the Conference Online Planner and Conference App

Thank You!
 Ana Escuder aescuder@fau.edu

Duke Chinn
james.chinn@browardschools.com

Special thanks to:
Barbara Perez

