How to Win Games Using M ath

Kristin A. Camenga, Houghton College, Kristin.camenga@houghton.edu

This handout and additional handouts for students with teacher resources are available at http://campus.houghton.edu/webs/employees/kcamenga/teachers.htm

Central Questions in Game Strategy:

- Does the game fiave a winner? Does the game end? These questions have some similarity to the mathematicalquestion of whether an object is well-defined:
- Does one player have a winning strategy? If so, what is it? If there is always a winner, one player or the other will have a winning strategy - but it can be VERV complicated to find. Combinatorialgames are simple enough that students can analyze at le ast portions of the strategy. In these games, there are opportunities for students to think through different possibilities and map out game trees, to recognize similar or symmetric situations, and to reason using a variety of representations.
Game Descriptions:

1. Chomp

Chomp is played on a rectangular grid, suck as squares of a candy bar. (It can be helpful to use a piece of grapf paper to play.) The lower left square is considered "poison". Players take turns picking a square. With each choice, all squares above and to the right of the picked square are no longer available - they are eaten. The person forced to take the "poison"square loses.

Example: Playing on a $3 \chi 8$ grid, the lower left square (in 6lack) is the pois on square. The first player chooses the square in the $2^{\text {nd }}$ row and $5^{\text {th }}$ column of the grid and all the shaded squares are eaten.

2. $\mathcal{X V}_{\text {im }}$

\mathcal{N} im is played starting with piles or rows of objects. Players take turns taking any number of objects from one of the piles. Whoever takes the last of the objects wins.

For example, suppose we start with three piles of MeNs, the first with 10 , the second with 8 and the third with 13. The first player canchoose to take \mathcal{B} MéMs from the first pile. However he/she could not take 8 from the first pile and 2 from the second pile, since he fhe can choose only from one pile.
3. Sprouts

Start with a fewdots (vertices). For the first fewgames, start with 2-4 vertices. Players take turns connecting two vertices with a curve (edge) and placing a newvertex along this edge. This is done following two rules:

1) Each vertexcan have at most three edges coming from it.
2) Edges must be drawn so that they do not cross or touch any other vertices than the two they are connecting.

If a player is not able to draw an edge according to the rules, the other player wins.
\mathcal{N} ote: You candraw an edge connecting a vertex to itself, such as:

A game might start like:

(The new vertex is shown in 6lack and the newedge is dotted in each step.)

4. Achi

This is a game played by the Asante people of Gfana, West Africa. It is played on a board like the one to the right. Each player starts with four counters (like X 's and O 's) and takes turns placing them on the Goard as in Tic-Tac-Toe, with the goal of getting a 3-in-a-row. $\mathcal{H o w e v e r , ~ i f ~ t h e ~ g a m e ~ i s ~ a ~ d r a w ~ a f t e r ~ e a c h ~ h a s ~ p l a y e d ~ t h e ~ i r ~ f o u r ~}$ counters, they take turns sliding a counter along the lines into the
 space leftempty. The winner is the first player to get 3-in-a-row.

For example, if the players have played their counters as at the left -first player in gray and second in 6lack-and the game is a draw, the first player then must slide the counter in the bottom right corner into the open (white) space, and then the second player slides one of his/her pieces, etc.

