Warm-up: Decimal Maze

- Begin with a value of 100 .
- Move down or sideways from Start to Finish.
- As you cross a segment, perform the indicated operation.
- You may not go up. You may not cross a segment more than once.
- What is the largest possible value when you reach Finish?

Welcome

紊	（94）	令	N
\＄	182	站	（21）
（31）	182	水	X
相	1 $\times 1$	（35）	米

NATIONAL COUNCIL OF

What'd You Get?

Session 181

Whoa!

How does that work?

NCTM

Engaging and Free Online Resources for Teaching Operations and Fractions

October 26, 2012
Sarah DeLeeuw
sdeleeuw@nctm.org

NCTM

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Reasoning and Sense Making

- It is very important for teachers to lead scholars into the habit of attending to the process going on in their own minds while solving questions, and of explaining how they solve them. [...] It is next to impossible for a person to direct another's thoughts unless he knows the channel in which they are already flowing.
- Warren Colburn, Teaching Arithmetic in the Method of Pestalozzi, 1830

Decimal Maze

- Begin with a value of 100.
- Move down or sideways from Start to Finish.
- As you cross a segment, perform the indicated operation.
- You may not go up. You may not cross a segment more than once.
- What is the largest possible value when you reach Finish?

Decimal Maze

Here's some help:

- The red lines are beneficial.
- The gray lines are detrimental.
- Addition and subtraction are inconsequential.

Decimal Maze

- Maximum value: 6332
- Minimum value?
- Finish value closest to 100 ?
- How many paths from Start to Finish?
- How else might you
 modify this activity?

Decimal Maze

NATIONAL COUNCIL OF

Pick-a-Path

Pick-a-Path

- http://illuminations.nctm.org/pickapath

NCTM

Play Anywhere. Learn Everywhere.

Dollar Nim

- Start with a dollar
- Remove any coin:
- Penny

- Nickel
- Dime
- Quarter
- Player to take the last coin wins

Dollar Nim

- What is the winning strategy for this game?
- How could you modify this game for use with your students?

Extension from NY Times Blog

Since Dollar Nim is played with real money, it makes sense for the participants to keep the change they remove. This confers a reward for removing larger denominations. To offset this, the winner must be given an extra monetary reward. What should be the minimum prize money for the two-player game so that no matter what happens, the winner comes out ahead?

Enrichment: Eleven Nim

- Start with a dollar
- Remove any coin:
- Penny
- Dime
- Player to take the last coin wins

John Mason, Math 2.0 Listserve

"Just because I play a game, it does not follow that I become aware of what I am doing [or the] underlying mathematical thinking. ...the value of playing a 'mathematical game' may lie not in the playing so much as in the reflective consideration of effective and ineffective actions."

Three C's of Game Play

- Competition
- Collaboration
- Communication

Even one-player games can spark rich discussion of strategy.
(a) The most advantageous place

\ddots			
			\ddots

(b) The next most advantageous place

(c) The least advantageous place

Tic Tac Toe

The hierarchical development of the three levels

Kamii, C. The Educational Value of Tic-Tac-Toe for Four-to Six-Year-Olds. Teaching Children Mathematics, May 2008.

NATIONAL COUNCIL OF
TEACHERS OF MATHEMATICS

Dig It

NATIONAL COUNCIL OF
TEACHERS OF MATHEMATICS

Dig It

- What are the best numbers to try to get?
- What number(s) are easiest to get?
- Which points on the number line can be created in the least number of ways?
- How many fractions can be created with a value less than 1 ?
- Which digit is the best to get?

Calculation Nation

- An online world of math strategy games
- One- and two-player games:

Challenge others. Challenge yourself.

- Basic registration process:
- Username
- Email
- Password
- Can play games as a guest without registration

Calculation Nation ${ }^{\text {TM }}$

To Date: 1,209,527 Visitors
September 2012: 1,500 Visitors/Day

Calculation Nation ${ }^{\text {TM }}$

- Idea Inspired by Teachers
- Played the "Product Game" Online Using Instant Messenger

History

- Two teachers in Wyoming

SのLCu\@\%fo\ Majfiod								
Sorry, you lost this game! Now try a two player game.	23 matasis				Comemon memen			
	I	2	3		4	5		6
	7	8	9		10	12		4
	15	16	18		20	21		4
	25	27	28		30	32		3
	36	40	42		45	48		9
	54	56	63		64	72		1
	12	3	4	5	6	7	8	9

Paper Pool

How to Play Paper Pool

- The ball starts in corner A.
- The ball is hit with an imaginary stick so that it travels at
 a 45° diagonal across the grid.
- If the ball hits a side of the table, it bounces off at a 45° angle and continues its travel.
- The ball continues to travel until it hits a pocket.

Paper Pool

From Paper Pool...

- Online Version of the Paper Pool Lesson

 http://illuminations.nctm.org/LessonDetail.aspx?ID=U165

...to Slam Ball

Game Design

- Other Games: Do the math, then you can do something fun.
- Our Games: Doing the math IS something fun.

http://calculationnation.nctm.org

Play a Game!

Ker-Splash

- Choose an expression:

$$
\begin{aligned}
& 17 x+29 y+43 \\
& 24 x+22 y+39
\end{aligned}
$$

- The values of x and y are unknown... but you can choose to increase one of them by 1 , and decrease the other by 1 . Which would you like to increase and which to decrease?
- Now, here are the values: $x=6, y=4$

Ker-Splash

Your Equation	$x+1, y-1$	$x-1, y+1$
$17 x+29 y+43$	249	273
$24 x+22 y+39$	273	269

Ker-Splash

Tips for Teaching with Games

- Do not show children how to play at a higher level. Instead, encourage them to do their own thinking.
- Do not reinforce "correct" behaviors or try to correct "wrong" ones.
- Play with individual children whenever possible.

Prime Time

Which is most likely to give an outcome of 4?

- Roll one die
- Roll two die, sum
- Roll two die, difference
- Spinner with four consecutive integers (your choice)
- Flipping n coins, number of heads

Prime Time

Roll one die

$$
P(4)=1 / 6
$$

NCTM

Prime Time

Roll two die, add

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6
$\mathbf{1}$	2	3	4	5	6	7
$\mathbf{2}$	3	4	5	6	7	8
$\mathbf{3}$	4	5	6	7	8	9
4	5	6	7	8	9	10
$\mathbf{5}$	6	7	8	9	10	11
6	7	8	9	10	11	12

Prime Time

Roll two die, subtract

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6
$\mathbf{1}$	0	1	2	3	4	5
$\mathbf{2}$	1	0	1	2	3	4
3	2	1	0	1	2	3
4	3	2	1	0	1	2
5	4	3	2	1	0	1
6	5	4	3	2	1	0

Prime Time

Spinner with four consecutive integers (your choice)

Prime Time

Flipping n coins, number of heads

n	P(exactly 4 heads)
1	0
2	0
3	0
4	$1 / 16$
5	$5 / 32$
6	$15 / 64$

n	P(exactly 4 heads)
7	$35 / 128$
8	$70 / 256$
9	$126 / 512$
10	$210 / 1024$
11	$330 / 2048$
12	$495 / 4096$

Prime Time

Current Location: 19

illuminations.nctm.org

Illuminations

The web site currently contains...

- 607 Lessons
- 108 Interactive Tools

On average, 325,000 visitors per month

- August 2004-93,371
- March 2012 - 632,910

Illuminations

New in 2012...

- 1 new game for Calculation Nation ${ }^{\ominus}$
- 10 new lessons, based on Calc Nation games
- 1 web app
- 3 mobile apps

Illuminations

Sorry, but that's not a pair. Keep looking!!

NATIONAL COUNCIL OF
teachers of mathematics

www.thinkfinity.org

Thinkfinity | verizontandation

Welcome to the New Thinkfinity!

The new home of our award-winning website and online community-offering a broad range of instructional resources from educators and leading educational organizations.

Learn more \rightarrow
Join us today

What We're Talking About

BLOG POST

EDSITEment's October Newsletter
1 day ago in Community Hub

DISCUSSION

Re: Tablets are easy to use, easy to break - Do you agree?

Thinkfinity Resources

KEYWORDS STATE STANDARDS

See what standards aligned resources are available by filling out the
Keywords or State Standards tab
Keywords:
Keywords.
Select a Grade:

Thinkfinity

- Provides standards-based content and professional development for K-12 teachers
- Supported by the Verizon Foundation
- NCTM received a three-year, $\$ 1.4 \mathrm{M}$ grant for Illuminations
- Consortium of content partners across all disciplines
- science, arts, humanities, geography, economics, language arts, math, and history

What a constraint!

Game of Nine Cards

- Materials: Nine cards numbered 1-9
- Object: To have any three cards in your hand that add up to 15

Game of Nine Cards

- Sample Game:

Player 1 Wins: 2 + 9 + $4=15$

Game of Nine Cards

Now what?

You Play!

The Basics...

- Who is more likely to win - the first player or the second player? Why?
- Will someone always win? Lose?
- What can you do to ensure that you don't lose?
- Is there a "best" card to choose?
- Why do we use a sum of 15 ?

A Winning Strategy?

- You play first, pick 8.
- Your opponent then chooses 3.
- What are the three numbers that you can choose to ensure a win?

His or Hers

A Winning Strategy?

- Your opponent plays first, picks 6.
- You choose 5.
- Your opponent picks 4.
- Which two numbers should you not pick?

His or Hers

A Winning Strategy?

- Your opponent plays first, picks 7.
- Then you choose 2.
- Your opponent picks 9.
- Which three numbers should you not pick?

More Sophisticated Yet?

- If your opponent plays first and picks an even number, what number should you choose to avoid a loss?

Another App from Under the Sea

Deep Sea Duel

Game of Nine Cards

- Deep Sea Duel is online!
- http://illuminations.nctm.org/deepseaduel

A Hint from Under the Sea

Modifying the Game of Nine Cards

- Label the nine cards as follows:

$$
5,12,19,26,33,40,47,54,61
$$

The winner must get three cards that total 99.

Modifying the Game of Nine Cards

- Label your nine cards with fractions:

$$
\begin{gathered}
1 / 6,5 / 24,1 / 4,7 / 24,1 / 3,3 / 8, \\
5 / 12,11 / 12,1 / 2
\end{gathered}
$$

The winner must get three cards that total 1.

Mahoney, John. What Is the Name of This Game?
Mathematics Teaching in the Middle School, October 2005.

Modifying the Game of Nine Cards

- Use words! Label the cards as follows:

$$
\begin{gathered}
\text { TIED, HOT, HEAR, TANK, WASP, } \\
\text { WOES, SHIP, HORN, BRIM }
\end{gathered}
$$

The winner must get three cards that bear the same letter.

Modifying the Game of Nine Cards

- Use exponents!
- Label the nine cards as follows:

$$
x, x^{2}, x^{3}, \ldots, x^{9}
$$

The winner must the product get x^{15}.

You tell me!

What sum should the winner need to win?

From NINE to SIXTEEN

The winner would use the sum of four cards to win.

Mahoney, John. What Is the Name of This Game?
Mathematics Teaching in the Middle School, October 2005.

Another Extension

- The winner is the first player to obtain the sum of exactly 15 from any TWO OR MORE cards.
- Does your strategy change? How so?

Reminder: What is the Goal?

- How does your strategy from the first version of the game of 9 cards compare to the strategy for these modifications?
- REFLECT: How did I come up with these other versions for the game of 9 cards?

Another App from Under the Sea

- http://illuminations.nctm.org/deepseaduel

Challenge Okta to Deep Sea Duel on the web.

NATIONAL COUNCIL OF

Options \& Modifications in App

Learning is fun. Get addicted!

Deep Sea Duel

is FREE online at Illuminations and Google Play and the App Store for phones and tablets.

NATIONAL COUNCIL OF

KenKen

KenKen is a puzzle game that helps students improve their calculation skills, logical thinking and persistence. The goal is to fill a grid with numbers so that no number appears more than once in any row or column. In addition, the numbers must combine to form a target number using a specific operation.
This page is updated with four new KenKen puzzles daily and is provided in partnership with Nextoy, LLC.

\# Instructions

KEN賢KEN.
Puzzles That Make You Smarter ${ }_{\text {mu }}$

Today's puzzles

For More KENKEN® Puzzles Visit www.kenken.com

illuminations.nctm.org/kenken

NCTM

An Example

print this puzzle
00:00:19

NCTM

Engaging and Free Online Resources for Teaching Operations and Fractions

Sarah DeLeeuw
sdeleeuw@nctm.org
nctm.org/games illuminations.nctm.org
calculationnation.nctm.org

