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Purpose:  

 Develop an understanding and fluency of unit circle values/relationships using manipulatives. 

 Use the unit circle to graph sin ,cos   functions by “unwrapping” the unit circle values. 

 Understand why the graphs of tan ,cot ,sec ,csc    appear as they do. 

 Understand what arcsin ,arccos  mean and how to evaluate in terms of principal solution. 

 Extend graphing of trig functions to polar graphs. 

 Extend the trigonometric knowledge to visualize/understand identities with manipulatives. 

 

 

 
Materials: 

 Paper plates 

 String 

 Scissors 

 Sets of card stock triangles cut into 45 - 45 - 90, 30 - 60 - 90 and 60 - 30 - 90 (yes, I know they 

are the same but you need to do these in three different) 

 Large Unit Circle for classroom display & post-it notes 

 Large display paper for graphs, small circular color coding labels 

 Card stock of angle measures 

 

 

 

  



5 

 

 Becoming Fluent with the Unit Circle  

 

What is a Radian? 

Paper plate activity – each student is given a flattened round paper plate and a piece of string.  

Find the center by folding the plate twice to form the axes. Label the center O. Use a marker to draw the 

axes. Label a point on the rim of the circle, A to form radius OA . Have students cut a piece of string the 

length of the radius and then tape the string on the rim of the circle, starting at point A and ending at point 

B. The measure of the central angle whose arc length is equal to the radius is 1 radian. 

 

              B 

 

 

       A 

 

 

 

 

 

Ask the students to estimate the number of degrees in a radian. Hopefully, someone will suggest 60 degrees. 

Mark OB . Cut the plate alongOA  so that they can fold the plate over OB to estimate the number of radians 

in a semicircle . . . a little more than 3! Since they will come up with a little more than three radians, this is 

the time to connect the idea that there are  radians in a semicircle and there are 2 radians in a circle. 

 

 

 

Angle Measures on the Unit Circle 

Label the angles measures of 
3

0, , , , 2
2 2

 
   on the paper plate with 0 and 2  at A. Fold the upper half of 

the plate into thirds. Draw a line (use a different color marker, if possible) along these folds all the way 

across the plate. Label as 
2

,
3 3

 
, etc. Fold these in half again and label (different color again) as

5
,

6 6

 
, 

etc. making the point that 
2

6


is the same as 

3


etc. Finally, make the folds and label (different color again) 

for 
3

,
4 4

 
, etc. 

 

 

 

 

 

             O                         
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Identifying Unit Circle Values Using Reference Triangles 

 

You will want to use a new paper plate for this activity. 

 

Students should mark the x and y-axes on this new paper plate. Label the quadrants as well as the signs of 

the x and y-coordinates found in each quadrant. 

 

Give each student 2 of each color of your pre-cut triangles.  
If we determine the plate to have a radius of 1, then the hypotenuse of each of these triangles will have a  

measure of 1 unit. Using some geometry students can determine the lengths of the remaining sides.  

 

 

Students should notice that two of the triangles are congruent.  

 

Tape these triangles on the paper plate so that the right angle is on the x-axis for each in such a way that 

they can flip over the x-axis to demonstrate reference triangles in either QI or QIV and QII or QIII. The first 

should be placed so that it is at the central angle of π/6, the second, at the central angle of π/4 and the third, 

at the central angle of π/3. The second set of triangle will be placed at a central angle of 
2 3 5

,  and 
3 4 6

  
. 

 

Label the lengths of each side of the triangles with the appropriate measure and sign, when positioned in QI 

and QII. Flip them to lay in QIII and QIV and label accordingly. This gives real meaning to the terms 

“terminal position” and how it relates to “reference angles”. 

 

 

 

Activities to Reinforce Unit Circle Fluency 

Create post-it notes with left and right coordinates of unit circle values. (I use two different colors, one for 

cosine and the other for sine.) Give students these post-it notes randomly as they enter the classroom. 

Students are instructed to place them on the Large Unit Circle display. 

 

 

Unit Circle Trading Cards – Inside/Out Activity 

See attached document to make trading cards. 

 

 

 

 

Using the Unit Circle to graph sin ,cos   functions by “unwrapping” the unit circle values 

Create large graphical displays. Label colored stickers with ordered pairs of

 radian measure, function value . Use a different colored label for each function. Give students a label to 

place on the graphical display to create a graph of the trig function. 
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Graphs of Tangent, Cotangent, Cosecant and Secant Functions 

Create large graphical display for tan  . Label colored stickers with ordered pairs of

 radian measure, function value . Give students a label to place on the graphical display to create a graph of   

the trig function. 

 

See Graphs of the Tangent, Cotangent, Cosecant and Secant Functions handout.  

 

 

 

 

Inverse Trig Functions and Principal Solutions 

  

You will need to create a large space in the room to do this activity. 

Students will select a unit circle angle measure as they enter the room. These measures should include 

positive and negative values for the same terminal position. Have them create a “human” unit circle. If two 

or more students have the same terminal position they should stand in front of one another. Ask students to 

kneel down 

 

Time to play “Simon Says . . .” 

 Simon says stand if the cosine of your angle is 
1

2
. (and similar statements) 

 

When finished playing “Simon Says . . .”, discuss inverses and relate to the problem of the periodicity of 

trig functions. This will give the students a reason to need to learn this material. 

 

The most important thing to discuss is the need to have only one acceptable answer as a principal solution. 

Most students will accept this but will not understand why they can’t answer 
7

4


for  arctan 1 when it has 

the same terminal position as
4


 . Go back to the graph for tan  and point out the part of the graph that we 

selected. Although both
7

4


and

4


  have a tangent of -1, only one of those angles is in the correct position. 

 

 

 See Trigonometric Principal Solutions Packet. 

 

 

Creating Polar Graphs from Transformed Trigonometric Graphs  

Students use rectangular graphs of transformed trigonometric graphs to investigate the graphs of roses, 

cardioids and limacons. 

      See Polar Graphing of Roses, Cardioids & Limacons worksheets.  
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Graphs of the Tangent, Cotangent, Cosecant and Secant Functions 
 
I. Tangent 

Recall





cos

sin
tan  . tan  will be undefined when cos 0   . For what values of  does this occur? 

 
 
Complete the table using the unit circle values from the first quadrant.  

 

  

 

cos  

 

sin  




cos

sin
tan   






cos

sin
tan   

Rounded to 
nearest tenth 

 

 

    

6


 

    

4


 

    

3


 

    

2


 

    

 

Examine the values of tan as the measure of the angle goes from 0 to 
2


. Do the values for tan  get larger or 

smaller as you go from 0  to 
2


  ? 

 

Look at the values of tan in Quadrant IV.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What happens numerically to tan as you move clockwise from 0  to 
2


   ? 

 
 

0

 

  

 

cos  

 

sin  




cos

sin
tan   






cos

sin
tan   

Rounded to 
nearest tenth 

 

 

    

-
6


 

    

-
4


 

    

-
3


 

    

-
2


 

    

0
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Use the information in the previous two tables to sketch a graph of tan for 
2


   to 

2


  . 

 
 
 
 
 
                          QIV      QI         QII        QIII 
 
 
 
 

 
Confirm with your graphing calculator. Be sure that your calculator is in radian mode and set your window to ZTRIG. 
 

What is happening in Quadrant II and Quadrant III? 
 
 
 

What does this tell you about the period of tan ? 

 
 
 
 

II. Cotangent 
cos

cot
sin





  

 

 

  

 

cos  

 

sin  
cos

cot
sin





  

cos
cot

sin





  

Rounded to 
nearest tenth 

 

 

    

6


 

    

4


 

    

3


 

    

2


 

    

2

3


 

    

3

4


 

    

5

6


 

    

 
  

    

 
 

0
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The graph of the cotangent function has asymptotes at integral multiples of  . Explain why. 

 
 
 

 

How do these results impact the graph of cot  in comparison to the graph of tan ? 

 
 
 
Sketch the graph of the cotangent function. 

 
 

 
 
 
              QIV      QI         QII        QIII     QIV 
 
 
 
 
 
 
 
III. Cosecant & Secant 

Use your TI to graph 
1

csc
sin




 and
1

sec
cos




 . 

Where do the asymptotes occur in the graph of the cosecant function? Hint:
1

csc
sin




 . 

Explain why. 
 

 
 

Where do the asymptotes occur in the graph of the secant function? Hint:
1

sec
cos




 . 

Explain why. 
 
 

 
 
Explain why the range for these functions excludes values of y between -1 and 1. 
 
 
 
 
Graph the cosecant and secant functions. 

 
 
 
 
 
 

      QIV      QI         QII        QIII               QIV      QI         QII        QIII 
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Trigonometric Principal Solutions 

 

I) Graph siny x . Determine an interval of x such that all values forsin x , that is 1 sin 1x   , are captured.  

You also want to have the interval be continuous. 

Which of the following intervals will be continuous and capture all values for sin x ? 

a) 
2 2

x
 
   b) 

3
0

2
x


    c) 

3

2 2
x

 
    d) x     

 

 

 

 

 

 

 

 

 
If we would always like to include the first quadrant, which interval is most appropriate?  
 
 
 

This is your principal solution interval for sin x . 
 
 

II) Graph cosy x . Determine an interval of x such that all values for cos x , that is 1 cos 1x   , are captured.  

You also want to have the interval be continuous. 
What quadrants on the unit circle will you find these? 
 
 
 
 
 
 
 
 
 
Using the same criteria as above, what is the principal solution interval for cos x ? 
 
 
III) Graph tany x . Determine an interval of x such that all values for the tan x , that is tan x  , are captured.  

 
 
 
 
 
 
 
 
 
 
Again, using the same criteria as above, what is the principal solution interval for tan x ? 

I 

IV III 

II 

I 

IV III 

II 

I 

IV III 

II 
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IV) Graph coty x . Determine an interval of x such that all values for the cot x , that is, tan x  , are captured.  

 
 
 
 
 
 
 
 
 
 
 
Again, using the same criteria as above, what is the principal solution interval for cot x ? 
 
 
 
V) Graph cscy x . Determine an interval of x such that all values for the csc x are captured. What are these values? 

Obviously the interval cannot be continuous. Find two adjacent quadrants where all the values of csc x are captured. 
 
 
 
 
 
 
 
 
 
 
What is the principal solution interval for csc x ? 
 
 
 
VI) Graph secy x . Determine an interval of x such that all values for thesec x are captured. What are these values? 

Obviously the interval cannot be continuous. Find two adjacent quadrants where all the values of sec x are captured. 
 
 
 
 
 
 
 
 
 
 
 
What is the principal solution interval for sec x ? 
 
 
 
 
 

I 

IV III 

II 

I 

IV III 

II 

I 

IV III 

II 
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Now use the results from above to evaluate each of the following: 
 
a) arccos(1)       b) arctan( 1)  

 
 

c) arcsin( 1)       d) 
1

arccos
2

 
 
 

 

 
 

e)  arctan 3       f) 
2

arcsin
2

 
  
 

 

 
 

g) 
2

arccos
2

 
  
 

     h) 
3

arctan
3

 
  
 

 

 
 
 

i) 
2

arccos
2

 
  
 

     j) arctan(1)  

 
 
 
 
Use your TI to evaluate the following. Set the mode to Radians. Be careful – you must answer with the appropriate 
value in terms of the principal solutions! 
 

a)  arcsin 0.75      b)  arccos 0.7  

 
 
 
 
 
 
 
 
 

c)  arctan 0.98      d)  arctan 4.7  
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Graphing Roses from Transformed Trigonometric Graphs 

Graph 2cos2y   on  0,2 on the rectangular plane. Examine the graph for maximum, minimum, midline values 

and intercepts. 

 

 

 

 

 

 

 

 

 Make a table of values from your graph above where r y . You will use this to create the polar graph. 

                       r               
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Graph 2cos3y   on  0,2 on the rectangular plane. Examine the graph for maximum, minimum, midline values 

and intercepts. 

 

 

 

 

 

 

 

 

  Make a table of values from your graph above where r y . You will use this to create the polar graph. 

                       r               
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Graphing Cardioids from Transformed Trigonometric Graphs 

Graph 2 2siny    on  0,2 on the rectangular plane. Examine the graph for maximum, minimum, midline values 

and intercepts. 

 

 

 

 

 

 

 

 

  Make a table of values from your graph above where r y . You will use this to create the polar graph. 

                       r               
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Graphing Limacons from Transformed Trigonometric Graphs 

Graph 1 2cosy    on  0,2 on the rectangular plane. Examine the graph for maximum, minimum, midline values 

and intercepts. 

 

 

 

 

 

 

 

 

  Make a table of values from your graph above where r y . You will use this to create the polar graph. 

                       r               
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Extension of Knowledge to Visualize Basic Identities: 

Give students random sized triangles (that will fit their paper plate). They can use them to set up a triangle from the 
given information. It is nice to assign different quadrants to different students to place their triangle in and then have 
them compare/confirm their answers with one another and the entire class. 
 

Set #1 

Given sin


 and cos


 , find 

a)  sin          b)  cos 2      

 
 
 
 
 

c) tan
2



 

 
 

       d)  csc   

 
 
 
 
 
 

e) 1sec 


(there are two possible answers) 

 
 
 
 
 
 

Set #2 
  

If cos θ = 0.3, find cos (θ + π). 
 
 
 
 

If tan θ = 3, find tan (θ + π). 
 
 
 
 

If sin θ = 4/5, find sec (θ + π). 
 
 

Did you consider what quadrant the angle could originate in? If not, do so now as there may be more than one 
answer. 
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Set #3 

Given sin


 


and tan


 


, find 

a)  cos         b)  sin       

 
 
 
 
 

c) tan
2



 

 
 

       d)  csc   

 
 
 
 
 
 

e) 1cot


 
(there are two possible answers) 

 
 


