

NCTM Process Standards

Connections
 Communication
 Problem Solving
 Reasoning and Proof
 Representation

How do the processes impact instruction?

High School

CCSS Standards for

Mathematical Practice

Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

CCSS Standards for Mathematical Practice

The Common Core proposes a set of Standards for Mathematical Practice that all teachers should develop in their students.

The Mathematical Practice Standards are strongly informed by the NCTM Process Standards in Principles and Standards for School Mathematics. These standards form the basis for standards documents nationally and internationally.

NCTM Process Standards and the CCSS Mathematical Practice Standards

NCTM Process Standards	CCSS Mathematical Practices
Problem Solving	- Make sense of problems and persevere in solving them. Use appropriate tools strategically
Reasoning and Proof	- Reason abstractly and quantitatively. - Critique the reasoning of others. - Look for and express regularity in repeated reasoning
Communication	- Construct viable arguments
Connections	- Attend to precision.
Representations	- Mook for and make use of structure

How do we incorporate the processes/practices into our everyday instruction?

Every student must believe....
"Everything you do in mathematics should make sense to you!"

Number Talk

Six step format of a number talk

Teacher presents the problem. Problems are presented in many different ways
2. Students are given time to figure out the answer.
Students share their answers.
4. Students share their thinking.
. The class agrees on the "real" answer for the problem.
6. The steps are repeated for additional problems.

Basic Facts:

- $7 \times 2=$
, $7 \times 4=$
, $7 \times 8=$

Here is a sample:

76-54
76-55
76-48
75-48

The Goal of Number Talks

- Develop conceptual understanding and computational fluency.
- Student think and reason like mathematicians.
- Students make connections and look for relationships
- Student share their strategies, learning to clarify and express their thinking which leads to developing mathematical language.

Teacher's role:
 Ask clarifying questions

- Who would like to share their thinking?
- Who did it another way?
- How many people solved it the same way as Billy?
Does anyone have any questions for Billy?
Billy, can you tell us where you got that 5?
- How did you figure that out?
- What was the first thing your eyes saw, or your brain did?

Show and Tell Addition

Growing an idea...

$$
3 \times 6
$$

$$
3 \times 60
$$

$$
3 \times 62
$$

$$
3 \times 68
$$

$$
3 \times 70
$$

Reasoning with Fractions

Deal or No Deal

- Marty offers his parents a new deal for his allowance. Rather than getting $\$ 5$ a week, he suggests they give him 14 for the first day, $2 \mathbb{\$}$ for the second day, $4 \mathbb{4}$ for the third day and so on for the entire month of February. Should Marty's parents accept his deal?

