This sine has threee errors.

Warm-Up

1. Multiply your age by 12 .
2. Add your friend's age.
3. Divide by 7.
4. Divide by 11.
5. Divide by 13.
6. Add the first six digits after the decimal point.
e.g., $0.123456 \rightarrow 1+2+3+4+5+6=21$
7. Finally, multiply by 5 ...

What'd You Get?

135

national council of teachers of mathematics
Session 135

Dollar Nim

- Start with a dollar
- Remove any coin:
- Penny
- Nickel
- Dime
- Quarter
- Player to take the last coin wins

Dollar Nim

- What is the winning strategy for this game?
- How could you modify this game for use with your students?

NATIONAL COUNCIL OF
TEACHERS OF MATHEMATIC

Eleven Nim

- Start with a dollar
- Remove any coin:
- Penny
- Dime
- Player to take the last coin wins

John Mason, Math 2.0 Listserve

"Just because I play a game, it does not follow that I become aware of what I am doing [or the] underlying mathematical thinking. ...the value of playing a 'mathematical game' may lie not in the playing so much as in the reflective consideration of effective and ineffective actions."

Three C's of Game Play

- Competition
- Collaboration
- Communication

Even one-player games can spark rich discussion of strategy.

Dig It

Dig It

- What are the best numbers to try to get?
- What number(s) are easiest to get?
- Which points on the number line can be created in the least number of ways?
- How many fractions can be created with a value less than 1 ?
- Which digit is the best to get?

Calculation Nation ${ }^{\ominus}$

- An online world of math strategy games
- One- and two-player games: Challenge others. Challenge yourself.
- Basic registration process:
- Username
- Email
- Password
- Can play games as a guest without registration

Calculation Nation $^{\text {TM }}$

Official Launch

April 22, 2009

To Date: 1,209,527 Visitors
September 2012: 1,500 Visitors/Day

Calculation Nation ${ }^{\text {TM }}$

- Idea Inspired by Teachers
- Played the "Product Game" Online Using Instant Messenger

History

- Two teachers in Wyoming

NCTM teachers of mathematics

Paper Pool

How to Play Paper Pool

- The ball starts in corner A.
- The ball is hit with an imaginary stick so that it travels at
 a 45° diagonal across the grid.
- If the ball hits a side of the table, it bounces off at a 45° angle and continues its travel.
- The ball continues to travel until it hits a pocket.

Paper Pool

national council of teachers of mathematics

From Paper Pool...

- Online Version of the Paper Pool Lesson
http://illuminations.nctm.org/LessonDetail.aspx?ID=U165

...to Slam Ball

national council of NCTM TEACHERS OF MATHEMATICS

Game Design

- Other Games: Do the math, then you can do something fun.
- Our Games: Doing the math IS something fun.

http://calculationnation.nctm.org

Ker-Splash

- Choose an expression:

$$
\begin{aligned}
& 17 x+29 y+43 \\
& 24 x+22 y+39
\end{aligned}
$$

- The values of x and y are unknown... but you can choose to increase one of them by 1 , and decrease the other by 1 . Which would you like to increase and which to decrease?
- Now, here are the values: $x=6, y=4$

Ker-Splash

Your Equation	$x+1, y-1$	$x-1, y+1$
$17 x+29 y+43$	249	273
$24 x+22 y+39$	273	269

Tips for Teaching with Games

- Do not show children how to play at a higher level. Instead, encourage them to do their own thinking.
- Do not reinforce "correct" behaviors or try to correct "wrong" ones.
- Play with individual children whenever possible.

Prime Time

Which is most likely to give an outcome of 4?

- Roll one die
- Roll two die, sum
- Roll two die, difference
- Spinner with four consecutive integers (your choice)
- Flipping n coins, number of heads NCTM teachers of mathematics

Prime Time

Roll one die

$$
P(4)=1 / 6
$$

Prime Time

Roll two die, add

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	2	3	4	5	6	7
$\mathbf{2}$	3	4	5	6	7	8
$\mathbf{3}$	4	5	6	7	8	9
$\mathbf{4}$	5	6	7	8	9	10
$\mathbf{5}$	6	7	8	9	10	11
$\mathbf{6}$	7	8	9	10	11	12

national council of teachers of mathematics

Prime Time

Roll two die, subtract

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	0	1	2	3	4	5
$\mathbf{2}$	1	0	1	2	3	4
$\mathbf{3}$	2	1	0	1	2	3
$\mathbf{4}$	3	2	1	0	1	2
$\mathbf{5}$	4	3	2	1	0	1
6	5	4	3	2	1	0

Prime Time

Spinner with four consecutive integers (your choice)

national council of teachers of mathematics

Prime Time

Flipping n coins, number of heads

n	P(exactly 4 heads)
1	0
2	0
3	0
4	$1 / 16$
5	$5 / 32$
6	$15 / 64$

n	P(exactly 4 heads)
7	$35 / 128$
8	$70 / 256$
9	$126 / 512$
10	$210 / 1024$
11	$330 / 2048$
12	$495 / 4096$

Prime Time

Current Location: 19

national council of teachers of mathematics

illuminations.nctm.org

Illuminations

The web site currently contains...

- 607 Lessons
- 108 Interactive Tools

On average, 325,000 visitors per month

- August 2004 - 93,371
- March 2012 - 632,910

Illuminations

New in 2012...

- 1 new game for Calculation Nation ${ }^{\bullet}$
- 10 new lessons, based on Calc Nation games
- 1 web app
- 3 mobile apps

Thinkfinity

- Provides standards-based content and professional development for $\mathrm{K}-12$ teachers
- Supported by the Verizon Foundation
- NCTM received a three-year, $\$ 1.4 \mathrm{M}$ grant for Illuminations
- Consortium of content partners across all disciplines
- science, arts, humanities, geography, economics, language arts, math, and history

Game of Nine Cards

- Materials: Nine cards numbered 1-9
- Object: To have any three cards in your hand that add up to 15

Game of Nine Cards

- Sample Game:

Player 1

Player 2

$$
\text { Player } 1 \text { Wins: } 2 \text { + } 9 \text { + } 4 \text { = } 15
$$

Game of Nine Cards

Now what?
 You Play!

The Basics...

- Who is more likely to win - the first player or the second player? Why?
- Will someone always win? Lose?
- What can you do to ensure that you don't lose?
- Is there a "best" card to choose?
- Why do we use a sum of 15 ?

A Winning Strategy?

- You play first, pick 8.
- Your opponent then chooses 3.
- What are the three numbers that you can choose to ensure a win?

A Winning Strategy?

- Your opponent plays first, picks 6.
- You choose 5.
- Your opponent picks 4.
- Which two numbers should you not pick?

A Winning Strategy?

- Your opponent plays first, picks 7.
- Then you choose 2.
- Your opponent picks 9.
- Which three numbers should you not pick?

More Sophisticated Yet?

- If your opponent plays first and picks an even number, what number should you choose to avoid a loss?

Another App from Under the Sea

Game of Nine Cards

- Deep Sea Duel is online!
- http://illuminations.nctm.org/deepseaduel

A Hint from Under the Sea

Game of Nine Cards

- Why is this game mathematically significant? Consider the following chart:

8	1	6
3	5	7
4	9	2

Modifying the Game of Nine Cards

- Label the nine cards as follows:

5, 12, 19, 26, 33, 40, 47, 54, 61

The winner must get three cards that total 99.

Modifying the Game of Nine Cards

- Label the nine cards with fractions:

$$
\begin{gathered}
1 / 6,5 / 24,1 / 4,7 / 24,1 / 3,3 / 8, \\
5 / 12,11 / 12,1 / 2
\end{gathered}
$$

The winner must get three cards that total 1.

Game of Nine Cards

- Use exponents! Label the cards as follows:

$$
x, x^{2}, x^{3}, \ldots, x^{9}
$$

This time we want the product of three cards (which means we must add the exponents).
The winner must get x^{15}.

- Have your students come up with the Magic Square for each of these modifications!

Modification: Words

- Use words! TIED, HOT, HEAR, TANK, WASP, WOES, SHIP, HORN, BRIM

- Winner needs three cards with same letter.

Modification: Sixteen Cards

The winner needs a sum of four cards to win.

Modification: Sixteen Cards

- What sum would the winner need?

(NCTM NATIONAL council of
NCTM TEACHERS OF MATHEMATICS

Modification: Two or More

- The winner is the first player to obtain the sum of

Can You Use This Game?

- How could you modify the game of nine cards to fit the needs of your students?

Reminder: What is the Goal?

- How does your strategy from the first version of the game compare to the strategy for these modifications?
- Reflect: How did you come up with these other versions for the game of nine cards?

iStuff. Android. Computer.

illuminations.nctm.org/deepseaduel

Equations of Attack

- Original Game:
- Both players place ships of length 2, 3, 4, and 5 on game board
- Other player guesses location of your ships
- Then, draw a line connecting each of your ships to each of your opponent's ships of the same length
- Determine the equation of the lines connecting the ships

Equations of Attack

Equations of Attack

- Revised Game:
- Players take turns placing ships at lattice points
- One player gets all of the cannons at the even locations along the y-axis - that is, $(0,0),(0,2)$, $(0,4),(0,6)$, and $(0,8)$
- Other player gets all cannons at the odd locations
- Player rolls dice; roll both, use them to make a fraction representing the slope

Equation of Attack

Equations of Attack

- The Algebra Standard states that "in grades 6-8 all students should explore relationships between symbolic expressions and graphs of lines, paying particular attention to the meaning of intercept and slope" (NCTM, 2000, p. 222).
- How does the activity help with understanding of those concepts?

My Favorite Game...

- Write a positive integer on a piece of paper.
- Show it to your neighbor.
- The winner is...

Whoever wrote the smallest integer NOT written by anyone else.

My Favorite Game

- Min: 1
- Max: 18
- Mode: 1
- Average: 8.5

My Favorite Game

My Favorite Game

My Favorite Game

My Favorite Game

