Decimal Maze

- Begin with a value of 100.
- Move down or sideways from Start to Finish.
- As you cross a segment, perform the indicated operation.
- You may not go up. You may not cross a segment more than once.
- What is the largest possible value when you reach Finish?

Welcome

12	(15)	76	x
8	*	72	(5)
(6)	α	76	δ
>	34	(15)	8

What'd You Get?

41

national council of
NCTM teachers of mathematics

Session 41

Whoa!

How does that work?

Developing Reasoning and Sense-Making with NCTM's Free Online Resources

G. Patrick Vennebush, Online Projects Manager National Council of Teachers of Mathematics
national council of
NCTM TEACHERS of mathematics

Today's Agenda

- Investigate Problems that Promote RSM
- Online Classroom Activities
- Lessons
- Mobile Apps
- Online Games
- Demonstrate Good Teaching Practices for Using Technology
- Have Some Fun!

Multiplication Array

In the 3×2 multiplication table below, the numbers $2,3,5,7$ and 11 are used to replace the variables a, b, c, d, and e.

\times	a	b	c
d			
e			

What is the maximum possible sum of the six products?

Multiplication Array

Multiplication Array

Multiplication Array			
\times	a	b	C
d	ad	bd	cd
e	ae	be	ce
$(a+b+c)(d+e)=a d+b d+c d+a e+b e+c e$			

Multiplication Array

Multiplication Array

(~'
NATIONAL COUNCIL OF teachers of mathematics

Multiplication Array

A handout with the Spatial Multiplication Table that appears on the previous slide can be found at:
http://mathjokes4mathyfolks.com/mj4mf-spatialmulttable.pdf

Reasoning and Sense Making

- Reasoning involves drawing conclusions on the basis of evidence or assumptions. It often begins with explorations, conjectures, or false starts. [...] Sense making involves developing an understanding of a situation, context, or concept by connecting it with existing knowledge. Reasoning and sense making are closely intertwined and interdependent.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
preprring nmericn' students for coumear a career
preprring americn's students for colueor a career

Reasoning and Sense Making

- Focus in High School Mathematics: Reasoning and Sense Making (2009)
- Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics (2006)

national council of NCTM TEACHERS of mathematics

Reasoning and Sense Making

- It is very important for teachers to lead scholars into the habit of attending to the process going on in their own minds while solving questions, and of explaining how they solve them. [...] It is next to impossible for a person to direct another's thoughts unless he knows the channel in which they are already flowing.
- Warren Colburn, Teaching Arithmetic in the Method of Pestalozzi, 1830

Reasoning and Sense Making

Reasoning and Sense Making

PROMOTES REASONING AND SENSE MAKING.
AND NOT JUST BECAUSE IT'S FASHIONABLE.

Decimal Maze

- Begin with a value of 100 .
- Move down or sideways from Start to Finish.
- As you cross a segment, perform the indicated operation.
- You may not go up. You may not cross a segment more than once.
- What is the largest possible value when you reach Finish?

Decimal Maze

Here's some help:

- The red lines are beneficial.
- The gray lines are detrimental.
- Addition and subtraction are inconsequential.

Decimal Maze

- Maximum value: 6332
- Minimum value?
- Finish value closest to 100 ?
- How many paths from Start to Finish?
- How else might you modify this activity?

(CTM National council o teachers of mathematics

Decimal Maze

Pick-a-Path

- http://illuminations.nctm.org/pickapath

Play Anywhere. Learn Everywhere.

Illuminations

Illuminations has two primary goals:

- Provide Standards-based resources that improve the teaching and learning of mathematics for all students.
- Provide materials that illuminate the vision for school mathematics set forth in the Principles and Standards for School Mathematics and Curriculum Focal Points.

Game of Nine Cards

- Materials: Nine cards numbered 1-9
- Object: To have any three cards in your hand that add up to 15

Game of Nine Cards

- Sample Game:

Player 1 Wins: $2+9+4=15$
()́r) NATIONAL COUNCIL of teachers of mathematics

Game of Nine Cards

Now what?
 You Play!

The Basics...

- Who is more likely to win - the first player or the second player? Why?
- Will someone always win? Lose?
- What can you do to ensure that you don't lose?
- Is there a "best" card to choose?
- Why do we use a sum of 15 ?

A Winning Strategy?

- You play first, pick 8.
- Your opponent then chooses 3.
- What are the three numbers that you can choose to ensure a win?

A Winning Strategy?

- Your opponent plays first, picks 6.
- You choose 5.
- Your opponent picks 4.
- Which two numbers should you not pick?

A Winning Strategy?

- Your opponent plays first, picks 7.
- Then you choose 2.
- Your opponent picks 9.
- Which three numbers should you not pick?

More Sophisticated Yet?

- If your opponent plays first and picks an even number, what number should you choose to avoid a loss?

Another App from Under the Sea

Game of Nine Cards

- Deep Sea Duel is online!
- http://illuminations.nctm.org/deepseaduel

A Hint from Under the Sea

Game of Nine Cards

- Why is this game mathematically significant? Consider the following chart:

8	1	6
3	5	7
4	9	2

Modifying the Game of Nine Cards

- Label the nine cards as follows:

5, 12, 19, 26, 33, 40, 47, 54, 61

The winner must get three cards that total 99.

Modifying the Game of Nine Cards

- Label the nine cards with fractions:

$$
\begin{gathered}
1 / 6,5 / 24,1 / 4,7 / 24,1 / 3,3 / 8, \\
5 / 12,11 / 12,1 / 2
\end{gathered}
$$

The winner must get three cards that total 1.

Game of Nine Cards

- Use exponents! Label the cards as follows:

$$
x, x^{2}, x^{3}, \ldots, x^{9}
$$

This time we want the product of three cards (which means we must add the exponents).
The winner must get x^{15}.

- Have your students come up with the Magic Square for each of these modifications!

Modification: Words

- Use words! TIED, HOT, HEAR, TANK, WASP, WOES, SHIP, HORN, BRIM

- Winner needs three cards with same letter.

Modification: Sixteen Cards

The winner needs a sum of four cards to win.

Modification: Sixteen Cards

- What sum would the winner need?

(NCTM NATIONAL council of
NCTM teachers of mathematics

Modification: Two or More

- The winner is the first player to obtain the sum of

Can You Use This Game?

- How could you modify the game of nine cards to fit the needs of your students?

Reminder: What is the Goal?

- How does your strategy from the first version of the game compare to the strategy for these modifications?
- Reflect: How did you come up
with these other versions for the game of nine cards?

iStuff. Android. Computer.

illuminations.nctm.org/deepseaduel

Calculation NationTM

http://calculationnation.nctm.org

Calculation Nation ${ }^{\circledR}$

"Psychological Moratorium" Principle

- Learners can take risks in a space where real-world consequences are lowered
- James Gee
national council of
NCTM teachers of mathematics

Square Off

Square Off

Square oft

- Refer to your handout.
- It is your turn. Create a rectangle with a perimeter of 28 units.
- What is your best move?

Considerations for Best Move

- After noting the scheme used for scoring and the locations of the spaceships remaining:

1. What are all the possible dimensions of rectangles you could draw? Find area and points too.

Dimensions							
Area							
Points							

2. What move would capture the largest area? What is the area? Draw the rectangle above.
3. What move would capture the most spaceships? How many ships? Draw the rectangle above.

Patterns

Create pattern units of two to five squares and display them on the grid.

Can you visualize how the grid will look when your pattern is repeated?

Patterns (with a Challenge!)

(c) national council of teachers of mathematics

Patterns (with a Challenge!)

Updated E-Example: 4.1 Patterns

Patterns

- How would you use this app in your classroom?
- Do you have suggestions for change?
- How could you modify the use of this app to better fit the needs of your students?

PLEASE: Offer feedback! www.nctm.org/betaapps

RSM Tasks

- www.nctm.org/rsmtasks

A cell phone tower will be built somewhere on the west side of the hill pictured in figure 1 . How far up the hill must the tower be placed to provide a signal to anyone on the east side of the lake?

KenKen ${ }^{\circledR}$

An Example

Welcome - Number Trick

4	7	8	1	
8	12	15	16	9
4	8	11	12	5
2	6	9	10	3
7	11	14	15	8

Developing Reasoning and Sense-Making with NCTM's Free Online Resources

G. Patrick Vennebush
pvennebush@nctm.org
national council of
NCTM teachers of mathematics

