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The Mathematics Scan (M-Scan)Coding Guide 

Introduction to the Measure 
The National Council of Teachers of Mathematics (NCTM) provides a vision for high-

quality mathematics instruction in its two standards documents Mathematics Teaching Today: 
Improving Practice, Improving Student Learning (NCTM, 2007) and the Principles and 
Standards for School Mathematics (NCTM, 2000).  The Principles and Standards for School 
Mathematics (2000)describes standards for teaching mathematics through six principles (Equity, 
Curriculum, Teaching, Learning, Assessment, and Technology), five content strands (Number 
and Operations, Algebra, Geometry, Measurement, and Data Analysis and Probability), and five 
process standards (Problem Solving, Reasoning and Proof, Communication, Connections, and 
Representation.  (See http://standards.nctm.org/). 

Although the NCTM standards provide a clear vision for ideal mathematics classroom 
instruction, they pose challenges to researchers and educators in mathematics education. First, 
research findings on the low levels of achievement in mathematics among American children 
suggest that teachers vary widely in the extent to which they provide quality mathematics 
instruction aligned with the NCTM principles and standards. Second, the principles and 
standards provide a vision for high quality mathematics but do not provide guidance necessary to 
measure the principles and standards in practice.  The M-Scan measure was developed to address 
both challenges. The M-Scan provides translation from NCTM standards to classroom practice 
to measure the quality of standards-based teaching practices in a large number of classrooms. 
Further, the M-Scan focuses on the implementation of high quality standards-based teaching. 
The ultimate goal is to use the M-Scan measure to translate from standards to practice in order to 
improve pre-service and in-service professional development efforts in mathematics. 

Two existing measures served as a foundation for M-Scan measurement development.  
Dimensions were selected, defined, and adapted from the SCOOP measure; which used 
classroom artifacts such as tests, observations, and instructional materials to measure the quality 
of mathematics instruction (Borko et al., 2005; Borko, Stecher, & Kuffner, 2007). The SCOOP 
measure included an observational component to understanding the quality of instruction. Eight 
of the dimensions included in that measure fit well with the goals of the M-Scan and could be 
adapted to measure mathematics instructional quality observationally. A ninth dimension was 
developed based on subsequent pilot work by the measurement development team. The structure 
of the coding protocol and the 1 to 7 scale was based on the Classroom Assessment Scoring 
System (CLASS; Pianta, Hamre & LaParo, 2007). Coding guidelines were established with 
descriptions to correspond to numerical ratings from 1 to 7 (segmented as low [1-2], medium [3-
5], and high [6-7]).  Procedures were established to train and establish reliable coding following 
recommendations from the CLASS.   
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Rationale for the Nine M-Scan Dimensions 
The M-Scan measures standards-based mathematics teaching practicesby assessing use of 

mathematical tasks, mathematical discourse, mathematical representations, and mathematical 
coherence (as conceptualized by NCTM, 2007; adapted from Walkowiak, 2010). To assess use 
of tasks, the M-Scan measures the constructs of cognitive demand, problem solving, and 
connections and applications. To measure discourse, the M-Scan assesses explanation and 
justification and mathematical discourse community. To measure representations, the M-Scan 
tapsuse of representations and students’ use of mathematical tools.  Finally, to measure 
coherence, the M-Scan examines structure of the lesson and mathematical accuracy. The nine 
dimensions were selected because of their link to these principles and standards, but also, 
because researchers in mathematics education have identified their importance in the classroom 
(Borko et al., 2005; Stecher et al., 2006; Walkowiak et al., under review). 

The relation among these constructs is best described pictorially in Figure 1.  The 
conceptual model describes the umbrella construct of standards-based mathematics teaching 
practicesas having four components: 1) the tasks that teachers select and the way in which these 
tasks are enacted in the classroom, 2) the discourse between teachers and children and among 
children about mathematics, 3) the representations used by teachers and students to represent and 
translate among mathematical ideas, and 4) the coherence of the lesson focusing on the extent to 
which the mathematical concepts are presented clearly and accurately and organized in a way 
that leads to a deeper understanding.  

 

Figure 1.  Conceptual model describing Standards-Based Mathematics Teaching Practices 
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Tasks 
Teachers are responsible for engaging students with quality mathematical tasks that 

deepen understanding and contribute to the development of mathematical fluency.  High quality 
mathematical tasks help students develop mathematics thinking, concepts, and skills.  The 
dimensions of cognitive demand, problem solving, and connections and applications are 
intended to reflect the tasks afforded by teachers.  Cognitive Demandrefers to task selection and 
the enactment tasks during a lesson.  It considers the extent to which task selection focuses on 
cognitively demanding tasks, and the extent to which the teacher consistently and effectively 
promotes cognitive depth (Stein et al, 1996).  Research suggests that lower cognitive demanding 
tasks are the norms in many mathematics lessons in American classrooms (Fey, 1981; Hiebert et 
al., 2005; Stodolsky, 1988).  Problem Solving reflects the teachers’ choice of task that enables 
students to identify, apply and adapt a variety of strategies.  Students should work on problem 
solving tasks with multiple solution paths thus, allowing students to clarify and extend their 
knowledge (NCTM, 2000).  From analyzing the videos of TIMSS, researchers found that United 
States students spent 66% of their time in mathematics classrooms practicing familiar procedures 
rather than engaged in problem solving (Hiebert et al., 2005).  Connections and Applications 
refers to teachers’ choice of tasks that facilitate an understanding of mathematics as a network of 
ideas in which students connect and apply mathematics to other mathematical concepts, their 
own experience, to the world around them, and to other disciplines (Boaler, 2002).  

Discourse 
The discourse of a classroom is central to what students learn about mathematics as a 

domain of human inquiry (NCTM, 2007).  The teacher's role is to initiate and orchestrate 
discourse and to use it skillfully to foster student learning.  Students learn to communicate 
mathematically when they are encouraged to participate in discourse about mathematical ideas 
(NCTM, 2000). Mathematical Discourse Community reflects the extent to which the classroom 
social norms foster a sense of community in which students feel free to express their 
mathematical ideas honestly and openly. And, the extent to which the teacher and students “talk 
mathematics,” and students are expected to communicate their mathematical thinking clearly to 
their peers and teacher, both orally and in writing, using the language of mathematics.  While 
discourse offers opportunities for engagement and higher cognition, TIMSS results found that 
most mathematics instruction in the United States does not promote discourse (Hiebert et al., 
2003; Hiebert & Stigler, 2000).  Explanation and justification focuses on the part of discourse 
that considers reasoning and proving mathematical ideas. It focuses on the extent to which the 
teacher expects and students provide explanations/justifications, both orally and on written 
assignments.  Teachers who require explanations from students ask many “how?” and “why?” 
questions to get at the depth of students’ understanding. Students not only explain how they 
obtain their solutions, but they justify why their strategies are appropriate for arriving at such 
solutions.  Studies have shown that students develop understanding when they are required to 
explain their thinking and justify their strategies (Cobb et al., 1991; Stein & Lane, 1996).   

Representations 
 Representations are necessary to students’ understanding of mathematical concepts and 
relationships. Representations allow students to communicate mathematical approaches, 
arguments, and understanding to themselves and to others (NCTM, 2007). They allow students 
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to recognize connections among concepts and model mathematical ideas.  Use of representations 
focuses on the extent to which teaching and learning promote the use of various representations 
(e.g., symbols, graphs, pictures, words, charts, diagrams, physical manipulatives) to illustrate 
ideas and concepts. Additionally, it is the extent to which students select, use, and translate 
among mathematical representations in an appropriate manner.   Simply using mathematical 
representations does not represent high-quality mathematics instruction. Rather, teachers need to 
set up a mathematical learning environment that facilitates the students’ processes of developing, 
making sense of, and translating between the representations to add understanding to a 
mathematical concept (NCTM, 2000).  Research has shown that students as young as 
kindergartners have high competence in representing mathematical concepts when supported by 
their classroom community (diSessa, Hammer, Sherin, & Kolpakowski, 1991; Greeno & Hall, 
1997; Lehrer & Schauble, 2002).  Students’ use of mathematical tools reflects an aspect of 
representations in whether students are afforded opportunities to use tools (e.g., calculators, 
pattern blocks, fraction strips, counters, virtual tools, etc.) to represent mathematical ideas.  In 
the elementary grades, students are in the early stages of understanding key mathematical ideas. 
Their understanding can be enhanced by representing ideas with hands-on tools before using 
pictures or symbols (Bruner, 1966). While research has supported the use of tools in mathematics 
classrooms (Raphael & Wahlstrom, 1989; Sowell, 1989; Suydam, 1986), the students’ own 
internal understanding of the mathematics must connect to the representation with the tool, 
beyond the manufacturer’s intent of the tool (Moyer, 2001).   

Mathematical coherence 
 Mathematical coherence is a critical component of any lesson, and considers the extent to 
which the teacher selects and enacts classroom activities in a clear way that leads to deeper 
student understanding.In the Trends in International Mathematics and Science Study (TIMSS) 
researchers found that mathematics lessons in the United States lacked logical order and 
coherence when compared to the other countries (Hiebert et al., 2005).  These researchers 
suggested that mathematics lessons that are focused and conceptually coherent provide better 
opportunities for students to learn mathematics (Hiebert et al., 2005). Structure of the lesson 
refers to the extent to which the design of the lesson is organized to be conceptually coherent 
such that activities are related mathematically and build on one another in a logical manner. 
Also, knowledge of both the content and process of mathematics teaching and learning is 
essential for high quality mathematics instruction.  Teachers’ comfort and confidence with their 
knowledge of mathematics affects how they teach (Hill, Blunk, Charalambous, Lewis, Phelps, & 
Sleep, 2008). Their knowledge of mathematics impacts how tasks are enacted during teaching, 
the nature of the mathematical discourse, and their use of mathematical representations in their 
classrooms.  Mathematical Accuracy reflects the extent to which mathematical concepts are 
presented clearly and accurately throughout the lesson (and the extent to which they are free of 
misconceptions and/or a teachers’ effectiveness for handling misconceptions that arise).  

M-Scan and Common Cores State Standards for Mathematics 

The nine dimensions of M-Scan are theoretically linked to Standards for Mathematical 
Practices, which are student practices, in the Common Cores State Standards for Mathematics 
(CCSS-M).  The Standards for Mathematical Practices explicate specific student practices that 
should be present in mathematics teaching and learning at all grade levels (NGA & CCSSO, 
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2010).  These standards are based on the NCTM’s (2000) Process Standards (problem solving, 
reasoning and proofs, communication, representation, and connections) and the National 
Research Council’s strands of mathematical proficiency (adaptive reasoning, strategic 
competence, conceptual understanding, procedural fluency, and productive disposition).  There 
are eight Standards for Mathematical Practices: 

1. Make sense of problems and persevere in solving them.  Mathematically proficient 
students are able to identify, apply, and adapt a variety of strategies to solve problems. 

2. Reason abstractly and quantitatively.  Mathematically proficient students make sense of 
and understand the meaning of quantities rather than just how to compute them.    

3. Construct viable arguments and critique the reasoning of others.  Mathematically 
proficient students understand and use stated assumptions, definitions, and previously 
established results in constructing arguments.   

4. Model with mathematics.  Mathematically proficient students can apply the mathematics 
they know to solve problems arising in everyday life, society, and the workplace.   

5. Use appropriate tools strategically.  Mathematically proficient students consider the 
available tools (e.g., calculators, pattern blocks, fraction strips, counters, virtual tools) 
when solving a mathematical problem.     

6. Attend to precision.  Mathematically proficient students try to communicate precisely to 
others, use clear definitions, explain the meaning of symbols, specify units of measure, 
use accurate labels, and calculate accurately and efficiently. 

7. Look for and make use of structure.  Mathematically proficient students look closely to 
discern a pattern or structure.   

8. Look for and express regularity in repeated reasoning.  Mathematically proficient 
students notice if calculations are repeated, and look both for general methods and for 
shortcuts. 

Figure 2 shows the connections between M-Scan, which are teacher practices and the 
Standards for Mathematical Practice which are student practices.  The purpose of figure two is to 
show how teacher practices interact and influences student practices.  For example, the domain 
discourse in M-Scan is linked to student practices of reasoning abstractly and quantitatively, 
looking for and express regularity in repeated reasoning, and constructing viable arguments and 
critique the reasoning of others.  Figure 2 is not exhaustive; that is, the links between M-Scan 
and CCSS-M are linked in many ways not represented in figure two.  Figure 2 shows one way 
they are linked. 

Figure 2:  Connecting Teacher Practices with Student Practices 
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Discourse 

• Mathematical Discourse 
Community 

• Explanation and Justification 

• Reason abstractly and 
quantitatively. 

• Look for and express regularity in 
repeated reasoning 

• Construct viable arguments and 
critique the reasoning of others. 
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• Structure of Lesson 
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• Attend to precision. 

 

Existing Observational Measures  

 There are existing observationally-based measures that assess the aforementioned 
constructs of quality of teacher-student interactions and mathematics instructional quality.  These 
existing measures have limitations for use with large scale research or do not capture the 
standards-based mathematics teaching practices that we were interested in examining. Analyses 
of these measures regarding each construct’s dimensions or domains can be found in Table 1 and 
are outlined below. The Classroom Assessment Scoring System (CLASS; Pianta, La Paro et al., 
2008) is a measure used to assess the quality of teacher-child interactions. To examine 
mathematics instruction, the Reformed Teaching Observational Protocol (RTOP; Piburn et al., 
2000) is a widely used observational measure. Additionally, Table 1 includes the M-Scan. 
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Table 1 

Content Analysis of Observational Measures 

 Measure 

  M-Scan CLASS RTOP 

Mathematics Instructional 
Quality    

Structure of the Lesson X   

Use of  Representations X  X 

Students’ Use of 
Mathematical Tools 

X   

Cognitive Demand X  X 

Mathematical Discourse 
Community 

X X X 

Explanation & Justification X X  

Problem Solving X  X 

Connections & Applications X X   

Mathematical Accuracy    

Teacher-Student Interaction 
Quality  

  

Emotional Support  X  

Classroom Organization  X  

Instructional Support X X X 



Classroom Assessment Scoring System. The CLASS focuses on the quality of interactions 
between students and teachers in a classroom (Pianta, La Paro et al., 2008). There are ten 
dimensions on the CLASS, each of which is scored on a 1-7 scale. The ten dimensions are used 
to measure quality in three domains: emotional support, classroom organization, and 
instructional support. Emotional support is assessed through scoring the nature of the climate 
(positive or negative), the sensitivity of the teacher, and the regard the teacher holds for various 
student perspectives, ideas, interests, and skills. Assessing behavior management, productivity, 
and format of instruction on the measure provides insights into classroom organization. The 
instructional support in classrooms is ascertained by looking at how concepts are developed, 
feedback is provided, and language is modeled. Researchers have examined the predictive 
validity of the CLASS, linking teacher-child interactions to child outcomes (Hamre & Pianta, 
2005; Pianta et al., 2008).  Theoretically, the CLASS domain of instructional support overlaps 
with three dimensions of mathematics instructional quality: discourse, explanation and 
justification, and connections and applications.   

RTOP. The RTOP (Piburn et al., 2000) is a 25-item instrument that measures the extent 
to which instruction is standards or reform-based. The authors found multiple factors including 
one consisting of eleven items to load onto an inquiry-based instruction factor(Piburn et al., 
2000).  The RTOP is coded on a Likert scale of 0-4, with zero indicating the item “never 
occurred” to four indicating the lesson is “very descriptive” of the item. The authors of the 
RTOP examined construct and predictive validity and determined valid inferences can be drawn 
from RTOP scores (Piburn et al., 2000).  Items on the abbreviated RTOP overlap to some degree 
with the instructional support domain, as conceptualized by the CLASS.  Theoretically RTOP 
overlaps with four dimensions of mathematics instructional quality: use of representations, 
mathematical discourse community, cognitive demand, and problem solving.   

Other measures. Two other observationally-based measures of mathematics instruction 
are used often, and thus, they warrant mention.   The Inside the Classroom (ITC) Observation 
and Analytic Protocol (Horizon Research, 2000)addresses some dimensions of mathematics 
instructional quality (structure of the lesson, mathematical discourse, explanation and 
justification, and connections and applications); however, the protocol also requires synopses, 
descriptions, and analyses of the lesson, students, materials, and other classroom components. 
The length of the protocol and the required descriptions produce rich data but may not be 
conducive for use in large-scale studies because of the length of time required to gather data   

The Learning Mathematics for Teaching: Quality of Mathematics in Instruction (LMT-
QMI) instrument (Learning Mathematics for Teaching, 2006) is designed to measure teacher 
actions in regard to mathematical content, curriculum materials, and students. When using the 
measure, coders watch five-minute segments of videotaped mathematics instruction and 
document mathematical events in the segment. While the LMT-QMI includes some aspects of 
standards-based teaching practices (use of representations, students’ use of mathematical tools, 
mathematical discourse community, explanation and justification, and connections and 
applications), the observation of five-minute segments may offer a more fragmented view than 
suited for some large-scale studies focused on examining standards-based mathematics teaching 
practices holistically.   
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Using the Mathematics Scan (M-Scan) Measure 
M-Scan codes are based on a full mathematics lesson. Coders watch the first 30 minutes 

of the video-recorded lesson and take notes throughout the 30-minute segment to record what 
occurs during the lesson. Coders write their notes on the back of the coding sheet or on separate 
pieces of paper that can be stapled to the coding sheets. The notes are used as examples and 
references when completing the M-Scan coding for that segment. After the first 30 minutes, the 
video is paused to allow a period coders to reflect and mark “soft codes” (i.e. initial ratings) on 
coding sheet by underlining the number corresponding to the initial code. These marks will serve 
as indicators of what happened during the first part of the lesson. 

After assigning “soft codes” for the first 30 minutes, coders continue watching the lesson, 
following the procedures done in the first 30 minute segment. Once coders have watched the 
entire lesson, final codes are assigned.  Coders should refer to the coding guides while coding.  

 Training in the M-Scan 
 The M-Scan training is a five day process involving reading, listening to conversations 
about each coding dimension, watching videotapes, and coding practice tapes. Training in the M-
Scan involves a four phase process and each phase has a corresponding letter of the acronym 
PTRD: 1) preparation, 2) training/mastery phase, 3) reliability phase, and 4) drift test phase.  
Master coders keep track and record trainee’s progress of attaining and maintaining reliability 
through these phases. 

 Preparation Phase:   
• Trainees read Mathematics Teaching Today: Improving Practice, Improving Student 

Learning (NCTM, 2007) and the Principles and Standards for School Mathematics 
(NCTM, 2000), as well as readings on cognitive demand, use of representations, 
mathematical tools, problem-solving, and discourse in mathematics teaching and 
learning.  Trainees record notes and questions.  

  Training/Mastery Phase:   
• Trainees meet with a master coder to discuss questions from the preparation phase and 

attend the training session on mathematics coding. During the training, they review and 
discuss the coding manual, observation forms, and highlights from the readings.  

• Trainees practice with the expert on at least two full class mathematics videos. After the 
training session, trainees watch two videotaped classes independently and take notes. 
Afterward, ratingsare compared to those of the master coders. 

• After trainees have watched and coded the assigned set of “training” videos, the master 
coders identify gaps and look for convergence.  More training tapes are assigned if gaps 
are present. Trainees’ progress to the reliability phase when ratings from the training 
videos converge with master codes.   

Reliability Phase:   
• Trainees watch and code six mathematics “reliability” video observations, without 

conferring with the master coder.     
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• Trainees meet with a master coder after watching the six mathematics “reliability” video 
observations.  The master coder will identify gaps and look for convergence.  Trainees’ 
ratings are scrutinized carefully to figure out whether: 1) errors are systematic, for 
example, some constructs/items need further work, or 2) errors are not systematic, in 
which case the trainee and the master coder need to carefully review and discuss the 
codes together. 

• Once the master coder has verified that the trainees reliable.  The trainee is able to code 
video mathematics observations using the M-Scan.   

Drift Test Phase:   
• Twice a month, all coders meet to co-code one video mathematics lesson to check for 

drifts in coding.  All coders confer to verify convergence with the master coders.     

Early Findings using the M-Scan 
The development of M-Scan comes from the work of a randomized controlled trial 

funded by the USDOE-Institute for Education Sciences (Rimm-Kaufman, Berry, Fan, 2007). The 
four-year Responsive Classroom Efficacy Study (RCES) examines the evidentiary basis of the 
Responsive Classroom (RC)Approach for improving elementary students’ mathematics 
achievement. As part of RCES, more than 1000 videotapes of 360 third, fourth, and fifth grade 
teachers (videotaped) teaching a typical mathematics lesson three times during the school year; 
each lesson lasting approximately one hour. Handouts and other instructional materials were 
gathered corresponding to the lessons.   

RCES enrolled 24 schools into two conditions, 13 intervention schools (i.e., RC 
Approach) and 11 control schools (i.e., business as usual).  Roughly half of the 24 schools were 
selected (via stratified randomization) into the RC condition; the remaining schools as control 
schools. The sample is sufficiently diverse to support generalizability; 27% of the children 
receive free/reduced lunch; 57% of the children are ethnic minorities. Data from RCES have 
been used to examine the ability to achieve reliability in coding and validity of the M-Scan.  A 
review by mathematics education and mathematics experts suggest that the dimensions of the M-
Scan represent components of mathematics instructional quality (Walkowiak, et al. under 
review). Further, several substantive questions about predictors and correlates of quality of 
mathematics instructional quality have been addressed, as described below. 

One-hundred eighty observations from a subset of 60 third grade teachers (83 female, 
83% white, 6.8% African American, 10.2% other) at the 24 schools from RCES were used to 
examine the M-Scan validity and score reliability (Walkowiak, et al. under review).  The coders’ 
recorded rationales for their scores on each of the M-Scan constructs for the 60 mathematics 
lessons. These responses were qualitatively analyzed for alignment with coding guide 
descriptors. Analyses indicate 87.7% of the coders’ rationales were aligned with coding guide 
descriptors for the entire M-Scan measure. Findings show that multiple observers can conduct 
observations reliably. Bivariate correlations between the M-Scan dimensions, RTOP, and 
CLASS domains were conducted. As hypothesized, M-Scan dimensions and RTOP converged 
on problem solving, mathematical discourse, and cognitive demand but low convergence on 
other dimensions.  This suggests that M-Scan provides information distinct from the RTOP in 
relation to five dimensions (structure of the lesson, use of representations, students’ use of 
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mathematical tools, explanation and justification, connections and applications).  The M-Scan 
dimensions and CLASS domains showed little convergence.  This suggests that M-Scan captures 
indicators of quality that are unique to mathematics instruction. Generalizability theory was used 
to demonstrate more variability between classrooms than between coders observing the same 
classrooms.  This finding indicates that M-Scan can be used with multiple coders.   

The M-Scan has been used to examine teacher predictors of higher standards based 
mathematics teaching practices (Ottmar, Rimm-Kaufman,& Berry, under review). Findings show 
that teachers trained in the RC approach showed higher use of standards based mathematics 
teaching practices than those in a comparison condition, suggesting that efforts to improve 
teacher capacity in classroom organization (using the RC approach) had impact on the quality of 
mathematics instructional settings. Findings examining the relation between two types of 
classroom mathematics instructional efficacy (i.e., personal mathematics teaching efficacy and 
mathematics teaching outcome expectancy) showed that higher levels of personal mathematics 
teaching efficacy (but not mathematics teaching outcome expectancy) related to high 
mathematics instructional quality. Further analyses using a latent profile analysis were conducted 
to examine teacher profiles (Walkowiak, 2010). The first profile (51%) scored above the means 
(relative to the sample) on mathematics instructional quality, mathematical knowledge for 
teaching, and mathematics teaching efficacy; the second profile (41%) scored below average on 
the three constructs, and the third profile (8%) was comparable to the first profile with the 
exception of below average mathematics instructional quality. Also, research suggests that third 
grade students who receive free or reduced price lunch make greater gains in achievement than 
higher income peers when their teachers demonstrate greater use of standards based mathematics 
teaching practices (Merritt, Rimm-Kaufman, Walkowiak & Berry, under review).  

The M-Scan measure has gone through the initial stages of translation into an 
instructional tool for pre-service and in-service teachers (Merritt, et al., 2010).  Specifically, the 
dimensions have been described in detail to establish their connection to instructional practice 
and establish parameters for the professional development of pre-service and in-service teachers. 
M-Scan can be used to provide teachers and mathematics educators with a framework for 
understanding mathematics instructional quality.   

Finding from the works using the M-Scan provide evidence of three noteworthy 
characteristics.  First, M-Scan offers efficiency; the dimensions can be coded in a time-efficient 
manner, a necessary practicality for researchers in large-scale studies. Second, M-Scan gives a 
holistic assessment of mathematics lessons; it considers the entire lesson, beginning, middle, and 
end. Third, M-Scan provides a framework for understanding standards-based mathematics 
teaching practices. 
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Appendix A 

Cognitive Demand 
1. Cognitive Demand:  Cognitive demand refers to command of the central concepts or “big ideas” of the discipline, generalization from specific instances to 
larger concepts, and connections and relationships among mathematics concepts. This dimension considers two aspects of cognitive demand: task selection and 
teacher enactment. That is, it considers the extent to which the selected task is cognitively demanding and the extent to which the teacher consistently and 
effectively promotes cognitive depth (Stein & Lane, 1996). 
 
 Low (1, 2)  Medium (3, 4, 5)  High (6, 7) 
Task Selection The tasks of the lesson are 

focused on memorization or 
procedures without 
connections to underlying 
concepts.  

 Some of the tasks are focused 
on memorization or procedures 
without connections to 
underlying concepts, and some 
of the tasks are focused on 
procedures with connections to 
underlying concepts or non-
algorithmic, complex thinking. 

 The majority of the tasks of the 
lesson are focused on 
procedures with connections to 
underlying concepts or non-
algorithmic, complex thinking. 

 None of the tasks are open-
ended. 

 Some of the tasks are open-
ended. 

 Most of the tasks are open-
ended.   
 
 

Teacher 
Enactment 

The teacher rarely provides 
feedback, modeling, or 
examples that promote 
complex thinking by 
students. 
 

 The teacher sometimes 
provides feedback, modeling, 
or examples that promote 
complex thinking by students. 

 The teacher often provides 
feedback, modeling, or 
examples that promote complex 
thinking by students. 

 The teacher rarely 
encourages students to make 
conceptual connections.  

 The teacher sometimes 
encourages students to make 
conceptual connections.  

 The teacher often encourages 
students to make conceptual 
connections. 
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Problem Solving 
2. Problem Solving: The extent to which instructional activities enable students to identify, apply, and adapt a variety of strategies to solve problems.  The extent 
to which the problems that students solve are complex and allow for multiple solutions. NOTE: To receive a "High" rating, problems should not be routine or 
algorithmic; they should consistently require novel, challenging, and/or creative thinking. 
1 Student formulation of problems can improve the score for this domain, but scores should not decrease if this is not present. 
2 Student formulation of problems may involve students extending/following up on problems not originally formulated by students 
 

 Low (1, 2)  Medium (3, 4, 5)  High (6, 7) 
Students' 
Engagement with 
Problems 

Students rarely engage in 
problems that allow them 
to grapple with 
mathematical concepts.  

 

Students sometimes engage in 
problems that allow them to 
grapple with mathematical 
concepts.   

 

Students often engage in 
problems that allow them to 
grapple with mathematical 
concepts.   

 Students often work on 
exercises for which they 
are practicing an already 
learned procedure. 

 

Students sometimes work on 
exercises for which they are 
practicing an already learned 
procedure.  

 

Students rarely work on 
exercises for which they are 
practicing an already learned 
procedure.  

      

Presence of Problem 
Solving with 
Multiple Strategies 

Classroom activities 
encourage only one 
strategy to solve each 
problem. 

 Classroom activities 
sometimes encourage 
multiple strategies to solve 
each problem. 

 Classroom activities often 
encourage multiple strategies 
to solve each problem. 

Student Formulation 
of Problems (when 
applicable)1, 2 

If students formulate 
problems, they are 
generally procedural. 

 If students formulate 
problems, they are sometimes 
solved with multiple 
strategies. 

 If students formulate 
problems, they are generally 
solved with multiple 
strategies. 
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Connections/Applications 
 
3. Connections/Applications:  The extent to which the lesson helps students connect mathematics to other mathematical concepts, their own experience, to the 
world around them, and to other disciplines. The extent to which the lesson helps students apply mathematics to real world contexts and to problems in other 
disciplines. NOTE: The experiences may be teacher-generated or student-generated, but they should relate to the students’ actual life situations. 
 

 Low (1, 2)  Medium (3, 4, 5)  High (6, 7) 
Connections Meaningful connections 

between mathematics 
learned in the classroom 
and other math concepts, 
experiences, disciplines, 
orthe world are rarely 
made. 
 
The class work is not 
relevant to students' 
lives. 
  

Meaningful connections 
between mathematics learned 
in the classroom and other 
math concepts, experiences, 
disciplines, orthe world are 
sometimes made. 
 
 
The class work is potentially 
relevant to the students' lives 

 

Meaningful connections 
between mathematics learned in 
the classroom and other math 
concepts, experiences, 
disciplines, orthe world are 
often made. 
 
 
The class work is relevant to the 
students' lives.  

      
Applications Students are never asked 

to apply the math they 
learn to the world around 
them. 

 

Students are sometimes 
asked to apply the math they 
learn to the world around 
them.  

 

Students are often asked to 
apply the math they learn to the 
world around them. 

  

 

. 
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Use of Representations 
 
4. Use of Representations:The extent to which the lesson promotes the use of and translation among multiple representations (pictures, graphs, symbols, 
words) to illustrate ideas and concepts. The use of and translation among representations should allow students to make sense of mathematical ideas or extend 
what they already understand.NOTE: Dimension includes both exposure (by teacher or curriculum) and use by students.  As outlined in NCTM's Principles and 
Standards for School Mathematics (2000), "students in grades 3-5 should continue to develop the habit of representing problems and ideas to support and extend 
their reasoning.  Such representations help to portray, clarify, or extend a mathematical idea" (p. 206).   

 Low (1, 2)  Medium (3, 4, 5)  High (6, 7) 

Presence of Representations 

 

Teacher and/or students 
rarely use more than one 
representation of a 
mathematical concept.  

 Teacher and/or students 
sometimes use more than 
one representation of a 
mathematical concept.   

 Teacher and/or students often use 
more than one representation for a 
mathematical concept.   

      

Teacher Translation among 
Representations 

For the representation(s) 
used, the teacher does not 
make connections to 
concepts or between 
representations. (i.e., 
procedural approach to use 
of representations). 

 For the representation(s) 
used, the teacher makes 
some connections to 
concepts and between 
representations. 

 For the representation(s) used, the 
teacher often makes connections 
to concepts and between 
representations. 

      

Student Translation among 
Representations 

Students do not translate 
between representations. 

 

Students sometimes 
translate back and forth 
between representations. 
They do not explain their 
representations.   

Students translate back and forth 
between representations. They 
also explain their representations 
at times.  
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Students' Use of Mathematical Tools 
5. Use of Mathematical Tools: The extent to which the lesson affords students the opportunity to use appropriate mathematical tools (e.g., calculators, pattern 
blocks, fraction strips, counters, virtual tools) and that these tools enable them to represent and develop abstract mathematical ideas.Tools are a way to represent 
abstract mathematical concepts through physical manipulation of objects.  NOTE: When students use equipment and/or objects to collect data that are later used 
in exploring mathematical ideas, the equipment/objects are not considered to be mathematical tools unless they are also explicitly used to develop the 
mathematical ideas. 

 
 

 
 Low (1, 2)  Medium (3, 4, 5)  High (6, 7) 
Opportunity to Use 
Tools 

Students do not use tools 
and/or are only permitted to 
use tools for help with 
procedural skills.  

Students sometimes 
use tools to investigate 
concepts and solve 
problems.   

Students often use 
tools to investigate 
concepts and solve 
problems. 

      

Depth of Use Students rarely make 
connections between tools 
and mathematical concepts. 

 Students sometimes 
make connections are 
between tools and 
mathematical concepts. 

 Students often make 
connections between 
tools and 
mathematical 
concepts. 
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Mathematical Discourse Community 
6. Mathematical Discourse Community: The extent to which the classroom social norms foster a sense of community in which students can express their 
mathematical ideas openly. The extent to which the teacher and students “talk mathematics,” and students are expected to communicate their mathematical 
thinking clearly to their peers and teacher, both orally and in writing, using the language of mathematics. NOTE: There is a “high bar” on this dimension because 
there is an expectation for students to have an active role in promoting discourse; this should not be only the teacher’s role. This is in contrast to 
Explanation/Justification. The rating does take into account whether discourse focuses on mathematics content but not the cognitive depth of that content.  
*Mathematical Thinking = processes, strategies, and/or solutions. 
 Low (1, 2)  Medium (3, 4, 5)  High (6, 7) 
Teacher's Role 
in Discourse 

The majority of math 
discussion in the classroom is 
directed from the teacher to 
the students.  
 

 Some of the math discussion 
in the classroom includes 
student participation, but 
some is teacher-initiated.  

 Throughout the math discussion in 
the classroom, students consistently 
participate. 

 Students' ideas, questions, 
and input are rarely or never 
solicited.   

 Students' ideas, questions, 
and input are sometimes 
solicited.   

 Students' ideas, questions, and input 
are frequently solicited. 

      
Sense of 
Mathematics 
Community 
through Student 
Talk  

Student to student talk rarely 
or never occurs. When 
students talk, they rarely 
share mathematical thinking* 
and language.   

 Student to student talk 
sometimes occurs. When 
students talk, they sometimes 
share mathematical thinking* 
and language.   

 Student to student talk frequently 
occurs.  When students talk, they 
often share mathematical thinking* 
and language.   

      
Questions Most of the teacher's 

questions have known/correct 
answers, and rarely 
encourage mathematical 
thinking*. 

 Some of the teacher's 
questions have known/correct 
answers, and some encourage 
mathematical thinking*. 

 Few of the teacher's questions have 
known/correct answers, and many 
encourage mathematical thinking*. 
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Explanation and Justification 
7. Explanation and Justification: The extent to which the teacher expects and students provide explanations/justifications, both orally and on written 
assignments. NOTE: Simply “showing your work” on written assignments – i.e., writing the steps involved in calculating an answer – does not constitute an 
explanation.   

 Low (1, 2)  Medium (3, 4, 5)  High (6, 7) 
Presence of 
Explanation and 
Justification 

Students rarely provide 
explanations or justify 
their reasoning. 

 Students sometimes provide 
explanations and/or justify 
their reasoning. 

 Students often provide 
explanations and/or justify 
their reasoning. 

 Teachers rarely ask "what, 
how, why" questions or 
otherwise solicit student 
explanations/justifications. 

 Teachers sometimes ask 
"what, how, why" questions 
or otherwise solicit student 
explanations/justifications. 

 Teachers often ask "what, how, 
why" questions or otherwise 
solicit student 
explanations/justifications. 

Depth of 
Explanation and 
Justification 
(procedural and 
conceptual) 

Student explanations often 
focus on procedural steps 
and rarely include 
conceptual understanding 
of the topic(s). 

 Student explanations 
sometimes focus on 
procedural steps and 
sometimes include 
conceptual understanding of 
the topic(s). 

 Student explanations rarely 
focus on procedural steps and 
often focus on conceptual 
understanding of the topic(s). 
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Structure of the Lesson 
 
8. Structure of the Lesson:  The extent to which the design of the lesson is organized to be conceptually coherent such that activities are connected 
mathematically and build on one another in a logical manner. Coherence in a lesson is defined as “the implicit and explicit interrelation of all mathematical 
components of the lesson”, (Hiebert et al., 2005, p. 124). NOTE 1: Ratings of observations should take into account interruptions for procedural activities that are 
not part of the instructional unit, when these interruptions consume a non-trivial amount of time.  NOTE 2: If a warm-up (i.e., brief, possibly unrelated segment 
at beginning of class) does not interfere with overall flow of lesson, it should not count against the overall score for this measure. 
 

 Low (1, 2)  Medium (3, 4, 5)  High (6, 7) 
Logical Sequence Overall, the components of 

the math lesson do not 
appear to be logically 
organized. 

 

Some components of the math 
lesson are logically organized, 
but others do not seem to fit. 

 

All components of the math 
lesson are logically organized. 

      

Mathematical 
Coherence 

The components of the 
lesson are not 
mathematically connected 
or coherent.   
 
 

 Some components of the lesson 
are mathematically connected 
and coherent. 

 All components of the lesson 
are mathematically connected 
and coherent. 

Promotion of Deeper 
Understanding 

The structure of the lesson 
does not appear to lead 
students to a deeper 
understanding of the 
mathematical concept(s) 
presented. 

 The structure of the lesson 
appears to lead students toward 
partial depth of understanding 
of mathematical concepts, or 
the structure of the lesson 
appears to lead students toward 
a deeper understanding of 
some concepts, but not others. 

 The structure of the lesson 
appears to lead students to a 
deeper understanding of the 
concept(s) presented. 
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Mathematical Accuracy 
9. Mathematical Accuracy The extent to which the mathematical concepts are presented clearly and accurately throughout the lesson. The extent to which 
student misconceptions are present, and whether teachers handle student misconceptions in a way that clarifies conceptual understanding. 
 

 Low (1, 2)  Medium (3, 4, 5)  High (6, 7) 
      
Accuracy in Teacher 
Presentation  

A few of the concepts and 
procedures presented to the 
students by the teacher are 
mathematically accurate.  
Most of the concepts and 
procedures are 
mathematically inaccurate.   

 Most of the concepts and 
procedures presented to 
students by the teacher are 
mathematically accurate, but on 
a few occasions, the concepts 
and procedures are 
mathematically inaccurate.    

The concepts and procedures 
presented to the students by the 
teacher are mathematically accurate.   

      

Clarity of 
Mathematical 
Concepts 

The mathematical concepts 
are not articulated clearly by 
the teacher. There is 
ambiguity in presentation of 
key mathematical concepts.   

 The mathematical concepts 
may be articulated with some 
clarity by the teacher. There is 
some ambiguity in presentation 
of key mathematical concepts.  

 The mathematical concepts are 
articulated clearly by the teacher.  
There is no ambiguity in presentation 
of key mathematical concepts.   

      
Responsiveness to 
Student Mathematical 
Thinking 
(code this portion NA if no 
misconceptions are 
observed) 

Student misconceptions are 
obvious in the lesson. 
Teacher response appears to 
leads to ambiguity or 
confusion about 
mathematical concepts 

 One or more student 
misconceptions are observed 
during the lesson. Teacher 
responses appear to lead to 
further clarity, but some 
ambiguity or confusion by 
students may still be present.  

 Student misconceptions may or may 
not have been observed during the 
lesson. Teacher responses lead to 
improved clarity about mathematical 
concepts for all students.  



M‐Scan 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Measure 

 

 

 

  
 
Low          Medium           High 

Cognitive Demand 
Task selection 
Teacher enactment 

 
 
1       2       3      4       5       6      7 

Problem Solving 
Students’ engagement w/problems 
Presence of multiple strategies 
Student formulation of problems 
 

 
 
1       2       3      4       5       6      7 

Connections/Applications 
Connections 
Applications 

 
1       2       3      4       5       6      7 

Representations 
Presence of representations 
Teacher translation among representations 
Student translation among representations 

 
 
1       2       3      4       5       6      7 

Use of Mathematical Tools 
Opportunity to use tools 
Depth of use 

 
 
1       2       3      4       5       6      7 

Mathematical Discourse Community 
Teachers’ use of discourse 
Sense of mathematics community 
through student talk 
Questions 
 

 
 
1       2       3      4       5       6      7 

Explanation and Justification 
Presence of expl/just 
Depth of expl/just 
 
 

 
 
1       2       3      4       5       6      7 

Structure of the Lesson 
Logical sequence 
Mathematical coherence 
Promotion of deeper understanding 

 
1       2       3      4       5       6      7 

 

Mathematical Accuracy 
Accuracy in teacher presentation 
Clarity of mathematical concepts 
Responsiveness to student mathematical thinking 
 
 

 
 
1       2       3      4       5       6      7 
 

Did the teacher present any content that was incorrect or communicate any misconceptions?  _____Yes     _____No 
If yes, please describe:  
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