## Tile Patterns

1. The first 3 figures in a pattern are shown below. Draw the $4^{\text {th }}$ and $5^{\text {th }}$ figures.
$1^{\text {st }}$ Figure
$2^{\text {nd }}$ Figure
$3^{\text {rd }}$ Figure
$4^{\text {th }}$ Figure
$5^{\text {th }}$ Figure

a. Assuming your pattern continues, explain how you would build the $10^{\text {th }}$ figure.
b. Explain how you would build the $50^{\text {th }}$ figure.
c. Explain how you would build the $\mathrm{n}^{\text {th }}$ figure.

2
a. Tell how (other than building the figure and counting tiles) you would find the total number of tile in the $50^{\text {th }}$ figure.
b. Describe a different method (other than building and counting) you could use to find the total number of tile in the $50^{\text {th }}$ figure.
c. Describe a method to find the total number of tiles in any figure (the nth figure).
3. How many total tiles are in the $123^{\text {rd }}$ figure? (Be sure to show how you find your answer.)
4. Jeremy needed 369 tiles to make a figure in the pattern. What figure number was it? (Show how you find your answer.)


## Task

1. Draw the next 2 figures
2. Describe the $50^{\text {th }}$ figure
3. Describe the nth figure
4. Write an expression that describes the number of tiles in the nth figure
5. Create an $x-y$ table. $x$ represents the figure number, $y$ represents the number of tiles in the figure
6. Make a scatterplot representing the table
7. Describe the pattern that this table represents
8. Write an equation showing the relationship between $x$ and $y$

Task

1. Draw the next 2 figures
2. Describe the $50^{\text {th }}$ figure
3. Describe the nth figure
4. Write an expression that describes the number of tiles in the nth figure
5. Create an $x-y$ table. $x$ represents the figure number, $y$ represents the number of tiles in the figure
6. Make a scatterplot representing the table
7. Describe the pattern that this table represents
8. Write an equation showing the relationship between $x$ and $y$

## Task

1. Draw the next 2 figures
2. Describe the $50^{\text {th }}$ figure
3. Describe the nth figure
4. Write an expression that describes the number of tiles in the nth figure
5. Create an $x-y$ table. $x$ represents the figure number, $y$ represents the number of tiles in the figure
6. Make a scatterplot representing the table
7. Describe the pattern that this table represents
8. Write an equation showing the relationship between $x$ and $y$

## Homework:

Task

1. Draw the next 2 figures
2. Describe the $50^{\text {th }}$ figure
3. Describe the nth figure
4. Write an expression that describes the number of tiles in the nth figure
5. Create an $x-y$ table. $x$ represents the figure number, $y$ represents the number of tiles in the figure
6. Make a scatterplot representing the table
7. Describe the pattern that this table represents
8. Write an equation showing the relationship between $x$ and $y$

## Task

1. Draw the next 2 figures
2. Describe the $50^{\text {th }}$ figure
3. Describe the nth figure
4. Write an expression that describes the number of tiles in the nth figure
5. Create an $x-y$ table. $x$ represents the figure number, $y$ represents the number of tiles in the figure
6. Make a scatterplot representing the table
7. Describe the pattern that this table represents
8. Write an equation showing the relationship between $x$ and $y$

## Task

1. Draw the next 2 figures
2. Describe the $50^{\text {th }}$ figure
3. Describe the nth figure
4. Write an expression that describes the number of tiles in the nth figure
5. Create an $x-y$ table. $x$ represents the figure number, $y$ represents the number of tiles in the figure
6. Make a scatterplot representing the table
7. Describe the pattern that this table represents
8. Write an equation showing the relationship between $x$ and $y$

## Task

1. Draw the next 2 figures
2. Describe the $50^{\text {th }}$ figure
3. Describe the nth figure
4. Write an expression that describes the number of tiles in the nth figure
5. Create an $x-y$ table. $x$ represents the figure number, $y$ represents the number of tiles in the figure
6. Make a scatterplot representing the table
7. Describe the pattern that this table represents
8. Write an equation showing the relationship between $x$ and $y$

## Task

1. Draw the next 2 figures
2. Describe the $50^{\text {th }}$ figure
3. Describe the nth figure
4. Write an expression that describes the number of tiles in the nth figure
5. Create an $x-y$ table. $x$ represents the figure number, $y$ represents the number of tiles in the figure
6. Make a scatterplot representing the table
7. Describe the pattern that this table represents
8. Write an equation showing the relationship between $x$ and $y$



Type of pattern and nth term (note there are many ways students might see the nth term - this is only one.

Linear - $3 n+2$

quadratic $-(n-1)^{2}+2 n$


Quadratic - $n(2 n+1)$


Linear $-4 n+4$


Exponential $-2^{n-1}$


| Standards for Mathematical Practice | Evidence |
| :---: | :---: |
| 1. Make sense of problems and persevere in solving them <br> - Explain meaning, looking for a way to start <br> - Analyze givens and constraints and make a plan <br> - Monitor progress and adapt <br> - Use various mathematical representations/tools (equations, verbal descriptions, tables, graphs, diagrams); look for regularity or trends <br> - Find a solution pathway - does this make sense <br> - Persevere \& stick to it, attempt different ways <br> - Explain problem |  |
| 2. Reason abstractly and quantitatively <br> - Decontextualize - abstract a situation and represent it mathematically - and contextualize - relate a problem to real-world situations <br> - Make sense of quantities \& their relationships <br> - Use coherent \& meaningful representations |  |
| 3. Construct viable arguments and critique the reasoning of others <br> - Use assumptions, definitions \& established results to construct arguments <br> - Make conjectures \& build a logical progression of statements to explore the truth of their conjectures <br> - Communicate conclusions \& respond to arguments of others <br> - Use reasoning to compare the validity of arguments \& explain the thinking of others |  |
| 4. Model with mathematics <br> - Apply mathematics to everyday situations; express scenarios in mathematical language and symbols <br> - Judiciously apply assumptions and approximations to simplify a situation <br> - Use a variety of math tools (diagrams, two-way tables, graphs, flowcharts, formulas) to represent important relationships between quantities <br> - Interpret results and possibly revise assumptions, approximations, and representations to make improvements <br> - Recognize math applications in various situations |  |


| Standards for Mathematical Practice | Evidence |
| :---: | :---: |
| 5. Use appropriate tools strategically <br> - Familiar with a wide variety of tools (e.g., pencil \& paper, concrete models, ruler, protractor, calculator, spreadsheet, computer algebra system, statistical package, dynamic geometry software) to represent and solve problems; understand potential insight gained by the use of these tools as well as limitations <br> - Strategically use estimation as a tool <br> - Make deliberate choices of which mathematical tools to use and when <br> - Aware of mathematical resources available <br> - Use technological tools to explore \& deepen understanding |  |
| 6. Attend to precision <br> - Use clear definitions in communication <br> - State the meaning of symbols <br> - Specify units of measure <br> - Include complete and appropriate labels on graphical representations <br> - Use accurate terminology with a clear understanding of math symbols and meaning <br> - Express numerical answers with a degree of precision appropriate for the problem context <br> - Make explicit use of definitions |  |
| 7. Look for and make use of structure <br> - Use patterns and structure to find similarities in mathematical representations and situations <br> - Use numerical relationships to build understanding and flexibility with numbers <br> - Use structure to help identify the parts of more complex expressions <br> - Break complicated expressions down into simpler components or step back and see complicated expressions composed of several parts |  |
| 8. Look for and express regularity in repeated reasoning <br> - Recognize \& use repeated calculations to simplify computations \& generalize methods <br> - Focus on the details of problem solving while maintaining oversight of the process employed <br> - Evaluate the reasonableness of intermediate results throughout problem solving |  |

