Moneyball in the Classroom Using Baseball to Teach Statistics

NCTM Annual Conference Denver, CO April, 2013

Josh Tabor Canyon del Oro High School joshtabor@hotmail.com

Description

As illustrated in the movie *Moneyball*, understanding the power of statistical analysis can be very rewarding. Using a formula from the movie, we will learn how to make predictions, calculate residuals, and develop the concept of least-squares. We will also use activities to explore regression to the mean and "least-squares regression" lines.

Objectives

At the end of the session, participants will:

- Obtain several classroom-tested examples that promote the real-world applications of mathematics and help students meet the Common Core State Standards
- Understand that the goal of a model should be minimize the size of prediction errors
- Understand the properties of least-squares regression lines and how to interpret the slope and intercept
- Understand the concept of regression to the mean and what it reveals about future performances

Focus on Math

This session is intended to help teachers address the Common Core State Standards which require students to "represent data on two quantitative variables on a scatterplot; fit a function to the data; and interpret the slope and the intercept of a linear model in the context of the data" (S-ID.6, S-ID.7). In addition, participants will learn how to use activities to develop the concepts of least squares and regression to the mean with their students.

Materials adapted from *Statistical Reasoning in Sports* by Josh Tabor and Christine Franklin, published by W.H. Freeman. For electronic copies of materials, including Fathom files, email me at joshtabor@hotmail.com.

Part 1: Pythagorean Winning Percentage

Bill James, one of the leading figures in sabermetrics, proposed that a team's winning percentage could be well modeled by the following formula, where RS = runs scored and RA = runs allowed. He called it the "Pythagorean" winning percentage formula because the denominator reminded him of the Pythagorean theorem.

Predicted winning percentage =
$$\frac{RS^2}{RS^2 + RA^2}$$

How does it work? Why did he use an exponent of 2? Let's find out using data from the 2012 Major League Baseball season.

Team	Runs Scored	Runs Allowed	Wins
ARI	734	688	81
ATL	700	600	94
BAL	712	705	93
BOS	734	806	69
CHC	613	759	61
CHW	748	676	85
CIN	669	588	97
CLE	667	845	68
COL	758	890	64
DET	726	670	88
HOU	583	794	55
KCR	676	746	72
LAA	767	699	89
LAD	637	597	86
MIA	609	724	69
MIL	776	733	83
MIN	701	832	66
NYM	650	709	74
NYY	804	668	95
OAK	713	614	94
PHI	684	680	81
PIT	651	674	79
SDP	651	710	76
SEA	619	651	75
SFG	718	649	94
STL	765	648	88
TBR	697	577	90
TEX	808	707	93
TOR	716	784	73
WSN	731	594	98

Part 2: Modeling Runs Scored

Knowing how to predict winning percentage using runs scored and runs allowed is great. But, how can we predict runs scored? Let's look at more data from 2012.

Team	Runs scored	Hits	Home runs	On-base	Slugging	OPS (On-base
						Plus Slugging)
ARI	734	1416	165	0.328	0.418	0.746
ATL	700	1341	149	0.320	0.389	0.709
BAL	712	1375	214	0.311	0.417	0.728
BOS	734	1459	165	0.315	0.415	0.730
CHC	613	1297	137	0.302	0.378	0.680
CHW	748	1409	211	0.318	0.422	0.740
CIN	669	1377	172	0.315	0.411	0.726
CLE	667	1385	136	0.324	0.381	0.705
COL	758	1526	166	0.330	0.436	0.766
DET	726	1467	163	0.335	0.422	0.757
HOU	583	1276	146	0.302	0.371	0.673
KCR	676	1492	131	0.317	0.400	0.716
LAA	767	1518	187	0.332	0.433	0.764
LAD	637	1369	116	0.317	0.374	0.690
MIA	609	1327	137	0.308	0.382	0.690
MIL	776	1442	202	0.325	0.437	0.762
MIN	701	1448	131	0.325	0.390	0.715
NYM	650	1357	139	0.316	0.386	0.701
NYY	804	1462	245	0.337	0.453	0.790
OAK	713	1315	195	0.310	0.404	0.714
PHI	684	1414	158	0.317	0.400	0.716
PIT	651	1313	170	0.304	0.395	0.699
SDP	651	1339	121	0.319	0.380	0.699
SEA	619	1285	149	0.296	0.369	0.665
SFG	718	1495	103	0.327	0.397	0.724
STL	765	1526	159	0.338	0.421	0.759
TBR	697	1293	175	0.317	0.394	0.711
TEX	808	1526	200	0.334	0.446	0.780
TOR	716	1346	198	0.309	0.407	0.716
WSN	731	1468	194	0.322	0.428	0.750

Part 3: Modeling Runs Allowed

Modeling runs allowed is even more challenging than modeling runs scored. Fortunately, there has been much progress in the last 10 years. Here are some data from 2012:

Team	Runs	Home	Walks	Strikeouts	Strikeout/
	allowed	runs	vv aiks		Walk
ARI	688	155	417	1200	2.88
ATL	600	145	464	1232	2.66
BAL	705	184	481	1177	2.45
BOS	806	190	529	1176	2.22
CHC	759	175	573	1128	1.97
CHW	676	186	503	1246	2.48
CIN	588	152	427	1248	2.92
CLE	845	174	543	1086	2
COL	890	198	566	1144	2.02
DET	670	151	438	1318	3.01
HOU	794	173	540	1170	2.17
KCR	746	163	542	1177	2.17
LAA	699	186	483	1157	2.4
LAD	597	122	539	1276	2.37
MIA	724	133	495	1113	2.25
MIL	733	169	525	1402	2.67
MIN	832	198	465	943	2.03
NYM	709	161	488	1240	2.54
NYY	668	190	431	1318	3.06
OAK	614	147	462	1136	2.46
PHI	680	178	409	1385	3.39
PIT	674	153	490	1192	2.43
SDP	710	162	539	1205	2.24
SEA	651	166	449	1166	2.6
SFG	649	142	489	1237	2.53
STL	648	134	436	1218	2.79
TBR	577	139	469	1383	2.95
TEX	707	175	446	1286	2.88
TOR	784	204	574	1142	1.99
WSN	594	129	497	1325	2.67

Part 4: Regression to the Mean

It's difficult to make predictions, especially about the future. –Yogi Berra

We now have a better understanding of how to model runs scored, model runs allowed, and use these values to model winning percentage. Of course, all of our "predictions" have been for values in the past. What does the concept of "regression to the mean" tell us about future performance?