

Another Initiative??!!

- Algebra for all
- Calculators for all
- Smart boards
- Differentiated instruction
- APPR
- Common Core State Standards

Any initiative built upon incorrect course placement is doomed to failure. Does every kid need Algebra 2 and Precalculus in high school?

What is the General Idea?

- To offer an alternative two-year program of rigorous, sophisticated, age-level interest mathematics to replace the traditional Algebra 2 and Precalculus, which may not be for every HS junior and senior.

Hands-On Statistics
Advanced Algebra with Financial Applications

- Why? High school is our last chance to get kids to appreciate (like?!) and feel they can use mathematics.
- Appropriate placement has always been crucial for students and teachers; with APPR it is again brought to the forefront.
- How can we justify a "one-sequence fits all" curriculum and then claim that we want to differentiate instruction?

HOW WELL DO YOUR STUDENTS RELATE TO CONCEPTS LIKE THESE? HOW NECESSARY ARE THEY?

- Dividing imaginary numbers
- Long polynomial division
- Graphing reciprocal trig functions
- Complex numbers in trigonometric form
- Polar Coordinates
- Complex Conjugates

CAN MORE RELEVANT AND MORE USEFUL
RIGOROUS MATHEMATICS BE USED TO ENGAGE AND INSPIRE STUDENTS?

"How to Fix Our Math Education"

By SOL GARFUNKEL and DAVID MUMFORD
NY Times, August 24, 2011
"Today, American high schools offer a sequence of algebra, geometry, more algebra, pre-calculus and calculus.
This highly abstract curriculum is simply not the best way to prepare a vast majority of high school students for life. .. For instance, how often do most adults encounter a situation in which they need to solve a quadratic equation? Do they need to know what constitutes a "complex number"?... Imagine replacing the sequence of algebra, geometry and calculus with a sequence of finance, data and basic engineering. ... Parents, state education boards and colleges have a real choice. ...The traditional high school math sequence is not the only road to mathematical competence.

Do You Like Your Cell Phone? TV? GPS? Car? iPod? Laptop?

"When am I ever going to use this?!"
Traditional higher-level mathematics is important; it is key to the creation of items we can't live without! It just might not be relevant for everyone at the same point in their schooling.

As a precursor to differentiating instruction, differentiating course placement is necessary.

"Mathematics Education: A Way Forward"
 by David Wees August 15, 2011 www.edutopia.org

"I don't see how it's doing society any good to have its members walking around with vague memories of algebraic formulas and geometric diagrams, and clear memories of hating them. We have many people who have learned school math, but don't apply it to their lives and hated learning it. Why do we think this is useful?"

From the Common Core State Standards for Mathematics Appendix A:
Designing HS Math Courses Based on the CCSS
"A menu of challenging options should be available for students after their third year of math-and all students should be strongly encouraged to take math in all years of high school. Traditionally... students are expected to take precalc. This is a good and worthy goal, but should not be the only option...An array of challenging options will keep math relevant for students, and give them a new set of tools for their futures..."

Common Core State Standards for Mathematical Practices
 (MP1 - MP8)

The problems we encounter in the "real world"-our work life, family life, and personal health-don't ask us what chapter we've just studied and don't tell us which parts of our prior knowledge to recall and use. In fact, they rarely even tell us exactly what question we need to answer, and they almost never tell us where to begin. They just happen. To survive and succeed, we must figure out the right question to be asking, what relevant experience we have, what additional information we might need, and where to

"A Radical Idea To Transform What Kids Learn In School"

by Marion Brady in the Washington Post, May 15, 2012
"America needs good mathematicians. How many? Take math teachers out of the mix, and the number of mathematicians America needs is tiny. If one kid in each high school in the country became a professional mathematician, it would glut the market.
...Running every kid in America through the math gauntlet to get a handful of mathematicians is like buying a bakery to get a loaf of bread."

"Is Algebra Necessary?"

Andrew Hacker, Ph.D., Queens College NY Times-July 28, 2012
"...Ours is fast becoming a statistical age, which raises the bar for informed citizenship. I propose that we start thinking of alternatives. Thus mathematics teachers at every level could create exciting courses in what I call "citizen statistics." The proposed course would familiarize students with the kinds of numbers that describe and delineate our personal and public lives..."

How does it make you feel?

How does it make kids feel?

> Algebra II is the fork in the road.

We Seriously Need to Re-Evaluate Our Outlook

- If a student needs weekly AIS sessions, trips to the math lab, frequent extra help, daily homework help, and a tutor, to get a 65 in Algebra 2, is that really the correct placement?!
- Do we expect success in Geometry or Algebra 2 from someone who "squeaked through" Algebra 1, or do we need constructive intervention?
- To raise the level of math education in the United States, and to compete better with China and Japan, must EVERY kid have to have the same cookie-cutter curriculum? And at what cost to students who don't thrive in it?

What Topics Comprise the Hands-On Statistics Program?

- Descriptive statistics-Frequency distributions, measures of central tendency, dispersion, correlation, regression, transformations. Standard (z) scores. Normal curve calculations.
- Experimental Design.
- Probability-the basis for statistical inference.
- Inferential statistics-sampling distributions, confidence intervals and hypothesis tests.

What Financial Topics Comprise the Advanced Algebra with Financial Applications Program?

- Investing
- Starting Your Own Business using selected topics
- Banking from Algebra 2,
- Credit
- Owning an Automobile
- Employment Basics
- Income Taxes
- Independent Living
- Retirement Planning
- Budgeting

Precalculus, Statistics, Probability and Geometry that are taught at an abilityappropriate level for the Algebra 1-prerequisite audience.

What Mathematical Topics Comprise the Advanced Algebra with Financial Applications Program?	
Piecewise functions Linear and curvilinear regression Quadratic/linear systems Slopes and intercepts Inequalities Limits Maximization Exponential functions Greatest integer function	Modified box \& whisker plots Expected value Outliers Probability Graphing Solving equations Apothem, area, perimeter Rational functions Irrational functions Spreadsheets Literal equations Modeling

WHAT ARE SOME DIFFERENT SAMPLE PATHWAYS TO GRADUATION THAT INCLUDE HANDS-ON STATISTICS and/or

 ADVANCED ALGEBRA WITH FINANCIAL APPLICATIONS?| Freshman | Sophomore | Junior | Senior |
| :--- | :--- | :--- | :--- |
| Algebra 1 | Geometry | HOS | AAWFA |
| Algebra 1 | Geometry | AAWFA | HOS |
| Algebra 1 | AAWFA | Geometry | HOS |
| Algebra 1 | AAWFA | Geometry | Algebra 2 |
| Two Year Algebra 1 | | HOS or AAWFA | Geometry |
| Algebra 1 | Two-Year Geometry | | AAWFA |
| Algebra 1 | HOS | AAWFA | Geometry |
| Algebra 1 | Geometry | Algebra 2 | AAWFA |
| Geometry | Algebra 2 | AAWFA | HOS |
| Geometry | HOS | AAWFA | Algebra 2 |
| Geometry | Two-Year Algebra 2 | | |

WHY SHOULD SCHOOLS OFFER THE ALTERNATIVE PATHWAY?

- The Algebra 1-only prerequisite allows students who did or would struggle with geometry proofs, trig, etc., to get a fresh start mathematically in an alternative course.
Incorrect placement is unfair to the student.
Incorrect placement is unfair to the teacher (APPR).
Incorrect placement is unfair to classmates.
Students who succeed at AAWFA and/or HOS may acquire the confidence and ability to then tackle Geometry and/or Algebra 2.
It is a chance for students to gain confidence in, and an appreciation for, mathematics.
All students need this material.
It offers a mathematics course that addresses a current "hot topic" in education.
It allows departments to graduate all students with 3 and 4 years of mathematics, and as a result could increase math enrollment.

WHO IS THE TARGET AUDIENCE?

- Students in need of a third or fourth-year math credit.
- Any students looking to take a math elective.
- Students who may have experienced difficulty in Algebra 1 and/or Geometry and may not be ready for Algebra 2 or Precalculus.
- Students who failed Algebra 2, and need another math course.
- Mathematically "disenfranchised" students.

Customize a One-Year Senior Course

-A fall semester of matrices, polar coordinates, limits, etc., and then a spring semester of five chapters of Advanced Algebra with Financial Applications-Automobiles, Employment, Income Taxes, Credit and Banking.
-A fall semester of introductory descriptive statistics and probability, and a spring semester of five chapters of Advanced Algebra with Financial Applications-Automobiles, Employment, Income Taxes, Credit and Banking.

 NATIONAL COMMON CORE STATE STANDARDS

WHY DO STUDENTS LIKE

ADVANCED ALGEBRA WITH FINANCIAL APPLICATIONS?

- It treats them like an adult with age-level interest material.
- It finally gives them a place to see where they NEED mathematics.
- It gives them a chance to use their mathematical skills to save them money.
- The motivational topics are of current interest to them.
- They have a chance to discuss, comment, and argue in a mathematics class.
- They can succeed at it.

Fall 2011: NYS Journal Article on Financial Algebra

```
New York State
Mathematics Teachers' Journal
```


What are the Essential Elements of the

 Advanced Algebra with Financial Applications Classroom?How is it the same as a "typical "math class?
Do now, motivation, development, model problems, practice, and applications problems.

How does it differ?

Discussion, passion due to age-level interest, reading, interpreting quotes, using outside resources, projects.

> A TEACHER OCCASIONALLY ADMITTING
"I don't know-let's find out!"

HOW DOES

advanced algebra with financial applications DIFFERENTIATE INSTRUCTION?

- The problem sets generally graduate in difficulty level, making developing appropriate assignments a teacher-friendly process.
- Projects allow students to demonstrate knowledge in many alternative ways.
- Projects can be completed at many different skill levels.
- Sections and chapters can be skipped without loss of continuity
- The course offering allows students to demonstrate mastery of rigorous math concepts in a format alternative to the traditional course path.
- Order of presentation of chapters can be changed.

Two Key Approvals!

- NCAA: Financial Algebra has received NCAA approval as a "core" mathematics course, and can be used in a collegepreparatory mathematics sequence by potential NCAA college applicants.
- UC a-g: Financial Algebra has received University of California " a - g" approval as a ' c ' level, core mathematics course, Advanced Algebra with Financial Applications.

It's of immediate interest to most high school students..

AUTOMOBILE INSURANCE

Mollie has $100 / 300 / 50$ liability insurance, and $\$ 50,000$ PIP insurance. She runs a stop sign and hits a telephone pole and bounces into a minivan with 8 people inside. Some are seriously hurt and sue her. Others have minor injuries. Three passengers in Mollie's car are also hurt.
a. The pole will cost $\$ 7,000$ to replace. Mollie also did $\$ 6,700$ worth of damage to the minivan. What insurance will cover this, and how much will the company pay?
b. The minivan's driver was a concert violinist. The injury to his hand means he can never work again. He sues for $\$ 4,000,000$ and is awarded that money in court. What type of insurance covers this, and how much will the insurance company pay?
c. The minivan's driver (from part b) had medical bills totaling $\$ 60,000$ from his hospita trip and physical therapy after the accident. What type of insurance covers this, and how much will the insurance company pay?
d. The three passengers in Mollie's car are hurt and each requires $\$ 12,000$ worth of medical attention. What insurance covers this, and how much will the company pay?

EXPONENTIAL DEPRECIATION:

Mathematically modeling the loss of a constant percent of value each year.

AGE	VALUE		AGE	VALUE
${ }^{1}$	${ }^{24230}$		${ }^{6}$	${ }^{15245}$
${ }^{2}$	${ }^{22355}$		${ }^{7}$	14075
${ }^{3}$	20645		${ }^{8}$	${ }^{13100}$
${ }^{4}$	${ }^{18070}$		${ }^{9}$	${ }^{12325}$
${ }^{5}$	16265		${ }^{10}$	11525

Celine bought a new car for $\$ 33,600$. She made a \$4000 down payment and pays $\$ 560$ each month for 5 years to pay off her loan. She knows from her
research that the make and model of the car she purchased is straight-line depreciated over 10 years.

Using Quadratic and Irrational Functions to Model Auto Accident Deconstruction

Simple arithmetic:

A car traveling 55 miles per hour covers 4840 feet per minute, or about 80 feet in one second. It covers 60 feet in the reaction time of $3 / 4$ second!
A quadratic function:
Braking Distance $=5(.1 \mathrm{~s})^{2}$, where $\mathrm{s}=$ speed
A square root function:
Skid speed $\mathbf{S}=\sqrt{30 D f n}$
$\mathrm{S}=$ speed entering skid; $\mathrm{D}=$ skid distance; $\mathrm{f}=$ drag factor (an index); $\mathrm{n}=$ braking efficiency (an index).

YAW MARKS:
 Geometry and Irrational Functions

C: length of yaw mark chord
M : length of middle ordinate
S : minimum speed
f : drag factor
r : radius of yaw mark arc

Getting a "Feel" for Compound Interest

Jennifer has a bank account that
compounds interest daily at a rate of 3.2%.
On the morning of Feb 10 the principal is $\$ 1,234.98$. That day she withdraws \$200.
Later that day she is mailed a \$34 check, and she deposits that in the bank.
On Feb 11, she deposits her \$345.77 paycheck.
What is her balance at the end of the day on Feb 11?

Date \rightarrow	Feb 10	Feb 11
Opening Balance	$\$ 1,234.98$	$\$ 1,069.07$
Deposit (+)	$\$ 34.00$	$\$ 345.77$
Withdrawal (-)	$\$ 200.00$	---
Principal Used to Compute Interest	$\$ 1,068.98$	$\$ 1,414.84$
Day's Interest rounded to the nearest cent	$\$ 0.09$	$\$ 0.12$
Ending Balance- (also tomorrow's opening balance)	$\$ 1,069.07$	$\$ 1,414.96$

Derivation of Formulas

After the calendar introduction, students use examples of semi-annual and quarterly compounding to find patterns and derive the compound interest formula

$$
B=P\left(1+\frac{r}{n}\right)^{n t}
$$

They use tables on a calculator to look for a pattern and evaluate

$$
e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}
$$

They use $\mathrm{B}=\mathrm{Pe}^{\text {rt }}$ to compute continuous compounding.

Promissory note terms, loan interest, lending institutions, loans, credit ratings, computing average daily balances and finance charges on a credit card, credit worthiness.

CONSUMER CREDIT

What is the monthly payment on a
\$50,000,10-year loan with an APR of 4.1\% ?
The monthly loan payment formula must be carefully entered into a calculator-understanding the placement of the parentheses is crucial!

$$
M=\frac{\left(P\left(\frac{r}{12}\right)\left(1+\frac{r}{12}\right)^{12 t}\right)}{\left(\left(1+\frac{r}{12}\right)^{12 t}-1\right)}
$$

MORTGAGES

The mathematics is taught alongside the vocabulary.
adjustable rate mortgage assessed value closing costs
back-end ratio balloon mortgage debt-to-income ratio escrow foreclose front-end ratio homeowner' s insurance interest only market value mortgage property taxes

For 2012, the Social Security Tax maximum salary was $\$ 110,100$. The tax rate was 4.2\% of all gross earnings up to this maximum. (A piecewise function with a cusp).

Using Algebra to Model Tax Worksheets

Express algebraically: $t(x)=.33(x-174400)+42449$
Get into $y=m x+b$ form: $t(x)=0.33 x-15103$
This is what the IRS uses on the tax worksheet:

How many BTU's do I need? HOME OWNERSHIP

Mike's bedroom measures 16 feet by 14 feet, and has a 9 -foot ceiling. It is wellinsulated, and is on the west side of his house. He wants to purchase an air conditioner. How large an air conditioner should he purchase?

BTU rating $\approx \frac{\text { while }}{60} \quad \begin{aligned} & \mathrm{l}, \mathrm{w}, \mathrm{h}=\text { length, width, height } \\ & \mathrm{i}=\text { insulation }(\mathrm{an} \text { index) } \\ & \mathrm{e}=\text { exposure }(\mathrm{an} \text { index) }\end{aligned}$

How can profit be modeled as the difference between a quadratic and linear function?

PROFIT = REVENUE - EXPENSES

Students get q in terms of p from the demand function, combine like terms, and view the profit parabola algebraically and graphically as the difference between revenue and profit.

Expense
Revenue
revenue and profit. Profii

Combining piecewise functions and the greatest integer function to model

CELL PHONE EXPENSES

A cell phone calling plan has a basic charge per month, which includes a certain amount of free minutes. There is a charge for each additional minute. The split function below gives the price $f(x)$ of an x minute phone call. Fractions of a minute are charged as if they were a full minute.

Describe the cost of the plan by interpreting the split function.
$f(x)=\left\{\begin{array}{l}40 \text { if } x \leq 750 \\ 40+0.35(x-750) \text { if } \mathrm{x}>750 \text { and } \mathrm{x} \text { is an integer } \\ 40+0.35([x-750]+1) \text { if } \mathrm{x}>750 \text { and } \mathrm{x} \text { is not an integer }\end{array}\right.$

Combining the Dozens of Expenses Addressed in Advanced Algebra With Financial Applications: HOUSEHOLD BUDGET SPREADSHEETS

The scope and sequence of Advanced Algebra with Financial Applications, as covered in this presentation, is contained in the book

Financial Algebra:
Advanced Algebra with Financial Applications by Gerver/Sgroi

A brand-new text--not an adaptation of an arithmeticbased personal finance book. For more information, check out this link:
www.cengage.com/community/financialalgebra

The Jump Start Coalition for Personal Financial LiteracyGet on their mailing list!

Pirating Statistics Activities

- Every stat book has a teacher's manual with hands-on activities.
- Some textbooks have hands-on activities.
- Internet searches will turn up tons of activities!
- You can make up your own activities.
- Probability activities abound.
- Plan a curriculum project to have all activities ready before the school year begins.

Internet Activity: Finding Least Squares
Google "Least Squares Geometer' s Sketchpad" (there are other similar sites)

Students move line until the sums of the squares are as small as possible.

WHERE IS THE MEAN?

MATERIALS: For this activity, you will need a pair of dice, a calculatar, and this shect
PROCEDURE:

1. Roll the pair of dice ten times. Find the sum of the numbers on the two dice. We will call these sumss x_{1} through x_{10}. Record the ten sums in this table:

x_{1}	x_{2}	x_{3}	x_{4}	x_{3}	x_{6}	x_{7}	x_{4}	x_{9}	x_{10}

2. Plot the ten sums on the number line below.
3. Find the mean of the ten sums. \bar{x}-__._D not round.
4. Plot the mean on the number line above.
5. Find the differences between the score and the mean for each score. Enter on the table
below. Do not round.

$x_{1}-\bar{x}$	$x_{2}-\bar{x}$	$x_{s}-\bar{x}$	$x_{0}-\bar{x}$	$x_{s}-\bar{x}$	$x_{0}-\bar{x}$	$x_{r}-\bar{x}$	$x_{0}-\bar{x}$	$x_{r}-\bar{x}$	$x_{10}-\bar{x}$

6. Find the sum of the differences.

This die-roll activity helps students discover that the sum of the directed distances from the mean is always zero.

Activity: Monte Carlo π

20

Activity: "Make the Lurk Work"

Go to Statistical Abstract of the United States. Find two sets of two variables each. Make sure the explanatory variable, x, is the same for both sets of data. Pick sets of data that are highly correlated.

1. Find the correlation coefficient for each set of data.
2. Find the coefficient of determination for each set of data. Explain what it means in a sentence.
3. Make sure your two explanatory variable data sets have the exact same x values. Leave out some data if you need to to make this so.
4. Put the two response variables into a 2-column table. Find the correlation between the two sets of y-values. Must this correlation be high since the original data sets have high r, and they have the same explanatory variables? Explain.
5. Give a reasonable, fictional theory on how your two y-values could actually have a cause-and-effect relationship. Attempt to legitimize this theory no matter how ridiculous it may sound. Have fun with it!
6. Identify and explain the role of a lurking variable in making your response variable associate so highly. Try to be realistic.

Activity: Sports Name Recognition

Generating Data to Investigate Measures of Spread
Range, MD, MAD, Variance and Standard Deviation

1. Phil Mickelson	x	($\mathrm{x}-\mathrm{M}$)	$\Sigma(x-M)$	$\Sigma(x-M)^{2}$
3. Albert Pujols				
4. Serena Williams 5. John Tortorella				
6. Lance Armstrong				
7. Nathan Adrian				
8. Robinson Cano				
9. Novak Djokovic				
10. LeBron James				

Sports Arbitration Case Project

In certain sports, when a player's contract is up, he can go to arbitration. The team and the player each get a lawyer to argue their case. The player's lawyer compiles reasons for a high salary, and the team's lawyer compiles reasons for a lower salary. They present their cases to an arbitrator who then makes a final, binding decision which cannot be appealed. Obviously both lawyers are stuck using the same set of numbers that the player has compiled.

How can the same numbers be twisted to back up two opposing cases?!

You are going to give an argument for the two sides of a hypothetical arbitration case for a real player, using the real statistics. You can get the data online or in the library.
You can use subsets of the data, more recent data, and any statistical analyses to prove your point.
Use graphs—side by side boxplots, scatterplots, histograms, stem plots, etc Use confidence intervals and/or hypothesis tests.

Activity: Auto Sales and Purchases

Using Regression and Modified Boxplots to Gain an Advantage
Students use
newspapers and the
Internet to find several
prices for the same
model.

Prices can be turned into a modified boxplot, and regression analysis can be done on the mileage and the price.
\$8,500 \$8,500 \$8,500 \$9,900 \$10,800 \$10,800 \$11,000 \$12,500 \$12,500 \$13,000 \$13,000 \$14,500 \$23,000

Activity: The Birthday Problem

How many randomly-selected people would you have to have in a room to have the probability of a matching birthday be at least 50\%?

1. How many people would guarantee a match?
2. An educated guess-how many people would make the probability $\mathbf{5 0 \%}$ or better for a match?
3. If you were forced to bet one way or another, how many people would have to be in the room before you'd bet there was a match?
4. Get in a group of two. Plan a simulation with 15 repetitions, each with a group of 23 people, just to get a gauge on the percent of matches. Use the random integer and Sort features to make this easy. How many of your 15 simulations had matches?
5. Let's pool the class' data and get a percent of groups of 23 that had matches.
6. Let's do some math. Hint-to find the probability of one or more matches, find the probability of the complement-no matches.

PROJECT: Writing a Calculator Manual for Stat Functions

Benefits of Balloon-Help Tutorials

Gets students in the habit of writing original, complete sentences more often.

- "If you can say it, you don't know it."

Gets the writing practice frequent, consistent, and spaced out through the year.

- Writing practice translates to better free response answers.
- An alternative form of assessment.
- The grade from these projects can be used in many ways.

Can be used for extra credit options, pinpointed on specific student trouble areas.
Makes for a great showcase or bulletin board. Raises profile of the Hands-On Statistics class.
By-product of trying to teach them the writing skills is they learn they math they are working on.

What Are Balloon-Help Tutorials?

- Designed to gradually break that old math habit-"boxing" numerical answers devoid of any verbal explanation.
- They require students to explain selected (or all) aspects of a solution to a problem; enhancing it with anything they feel helps explain the problem.

Imagine a world in which kids of
all ages, interests and abilities
embraced and appreciated
mathematics!
We CAN make this happen, with
Pathways appropriate for
everyone!

We CAN make this happen, with Pathways appropriate for everyone!

Selected Stat Textbook Titles

Use as primary texts and/or as instructor resources

- Statistics in Action-Watkins, Scheaffer, Cobb
- Statistics Through Applications-Starnes, Yates, Moore
- Activity-Based Statistics-Scheaffer, Watkins, Gnanadesikan, Witmer
- Workshop Statistics-Rossman, Chance

Get samples at conferences, look online, and go to used book websites for out-of-print books.

