

Introductions....

Yvonne Reilly & Jodie Parsons

Sunshine College.

Staughton College

Australia

How leachers provide the ZPD

Withdrawal

Student targeted intervention

Modification

Weaker students expected to do less

Groups

Extension, Middle and Supported groups

Streaming

Ability-based permanent separation

How our model differs

The Fully Inclusive Class

- Teacher provides a minimum of 3 levels of each task
- Students select a task
 that is "just right" for
 them
- Task is labelled, not the student
- Explicit teaching at point
 of need

Before Level	At Level	Beyond Level
Students operating at this	Students operating at this level	Students operating at this level
level will construct a	will construct a rectangular	will construct a rectangular prism
container in the shape of a	prism which will hold a nugget	which will hold a nugget the same
rectangular prism which will	the same size as a Ping-Pong	size as a Ping-Pong ball. Students
hold a nugget the same size as	ball. Is this the minimum sized	will then determine the volume of
a Ping-Pong ball.	container that could be used?	the container not taken up by the
Students may use either 1cm grid paper or 1cm cubes to	What is the volume of the rectangular prism?	Ping-Pong ball sized nugget.
determine the volume.	BONUS: Can you draw more	BONUS: If the Ping-Pong balls
BONUS: Can you draw more	than one net?	were to double in size what are
than one net?		the dimensions of the smallest
		rectangular prism it could be
		placed in?

An example of a lesson

Learning Intention:

Converting Fractions to decimals and percentages through representing data.

"One Good Question"

Students create a valid survey question and collect data from their peers. This data is then tabulated as a fraction and converted to decimals and percentages. These values are then used to create a graphical representation of this data.

Before level

- Know place value names.
- Understand a fraction is a part of the whole
- Percentage means out of 100.
- Bar charts
- Strip graphs

At level

- Pie charts have 360°
- Equivalent fractions
- Doubles and halves as proportions

Beyond Level

- Round decimal numbers
- Recognising the data as a whole and each individual as a part of that whole.
- Percentage of an amount.
- Fractions and percentages as a proportion

Planning differentiation

Questions?

How do you stop the students from choosing a task which is too easy?

Thank you!

www.parsonsreilly.com

<u>parsons.jodie.m@edumail.vic.gov.au</u>

reilly.yvonne.c@edumail.vic.gov.au

References..

Dole, S. (2003) Questioning numeracy programs for at risk students in the middle years of schooling. MERGA conference proceedings 2003

Braathe, H.J. (2009) dilemmas of streaming in the new curricula in Norway. Oslo university.

Reilly, Y., Parsons, J. & Bortolot, E., (2009). Reciprocal teaching in mathematics.

Mathematics of prime importance. MAV Annual Conference 2009.

Reilly, Y., Parsons, J., Bortolot, E., (2010), An Effective Numeracy Program for the Middle Years. *New curriculum: New opportunities*. MAV Annual Conference 2010.

Reilly, Y. and Parsons, J. (2011), Delivering Differentiation in the Fully-Inclusive, Middle Years' Classroom. *Mathematics is Multi-Dimensional*. MAV Annual Conference, 2011.

Vygotsky, L (1978) Mind in Society, Cambridge, MA, Harvard University Press. Pp 79-91

Tate, W.F & Rousseau, C (2002), Access and opportunity: The political and social context of mathematics education. *International handbook of research in mathematics education* (pp. 271 – 300). Mawhwah, NJ: Lawrence Erlbaum

Zevenbergen, R., (2001) Is streaming an equitable practice: Students' experiences of streaming in the middle years of schooling. *Numeracy and beyond* (Proceedings of the 24th annual conference of Mathematics education Research group of Australiasia, pp. 563 – 570) Sydney MERGA

Zevenbergen, R., (2003) Streaming in school mathematics: A Bourdieuian analysis. For the Learning of Mathematics, 23 (3). 5-10. Griffith University, Australia