Modeling Data with Core Math Tools: Enhancing Mathematical Practices Implementation Erin E. Krupa
 April 19, 2013

To download the free Core Math Tools, go to: nctm.org (click on top left purple cell "Core Math Tools")

Tasks Highlighted in Session

- Pay It Forward (Core-Plus, Course 1, Unit 5, Lesson 1, Investigation 1)
- More Bounce to the Ounce (Core-Plus, Course 1, Unit 5, Lesson 2, Investigation 1)
- Modeling Decay: Coin Experiment (Core-Plus, Course 1, Unit 5, Lesson 2, Investigation 3)

Videos Shown During the Session

- Annenberg Video (Handshake Problem \#42): http://www.learner.org/vod/login.html?pid=910
- Pay It Forward Motivation: http://www.youtube.com/watch?v=N0HTneOLrEc
- Bouncing Ball Motivation: http://www.youtube.com/watch?v=-zOrV-5vh1A\&feature=related

More Information About Core Math Tools

- Features include:
- Algebra- CAS and Spreadsheet
- Geometry- Coordinate and Synthetic
- Statistics- Data Analysis and Simulation
- Discrete Math- Vertex-Edge Graphs
- Pre-made data files + Extra Apps

Using Core Math Tools for Tasks in Session

1. Pay It Forward

a. Algebra->Spreadsheet (a new window will appear)
b. Label Columns with: Stage Number, Good Deeds in this Stage, Total Deeds
c. In the Stage Number column, enter the number 1 in cell A2, 2 in cell A3, and so on until you have entered numbers $1-10$
d. In the Good Deeds Column use a mathematical formula to fill the first cell. Type $=3^{*} \mathrm{~A} 2$ in cell B2 to fill in 3 for the number of good deeds at stage 1 .
e. Then type $=3 *$ B2 into cell B3 to generate the number of deeds at stage 2 .
f. Then, to fill the formula down, highlight the cells you want to fill (B3 through B11) and click Edit->Fill Down
g. In the third column, for the total number of deeds, type 3 into cell C 2 .
h. Then, type $=$ B2 + B3 into cell C3.
i. Fill that formula down by highlighting cells C 3 through C 11 and repeating the fill down step from step e.
j. Graph the data: Tools, Graph, Scatterplot
i. Set the horizontal axis to column A (stage \#)
ii. Set the vertical axis to column B (\# good deeds)
k. Find an equation for the data: Options, Draw Regression Model
i. Use the Models tab to fit different models and to see the equation

2. More Bounce to the Ounce

a. Algebra->CAS->File->Data->New
b. Type "Bounce Number" in Column A and "Rebound Height" in Column B
c. To enter fractions in the cell type " $=16 / 3 "$ ", then hit ENTER
d. Fill in each column as necessary for the problem (similar to the previous problem with the Fill Down feature)
e. To plot: Click on blue Graph in the menu pane, Scatterplot, choose Column A for horizontal and Column B for vertical, click "OK"
f. Click on the "Graph" box in gray next to Table and Data.
g. Change the window in "Settings" tab
h. Checking your Work on this task:
i. Click the $\mathrm{Y}=\mathrm{tab}$
ii. Type in the equation you believe to be correct
iii. In the Command line, check the box next to "Graph" for the function you just entered
iv. Click the Graph tab and your function should be listed in red along with your data points
3. Coin Task (Steps a-j can be skipped if you use real coins with your class for this investigation)
a. Click on Simulation
b. Click on the coin
c. Go to Build->Count \# of
d. Enter 100 in the "In \qquad Trials" to have 100 coins flipped
e. Select "H" as the outcome to count
f. Put " 1 " in the \qquad Run box.
g. Click "Conduct" to run the trial
h. On the right side you will see the outcomes and at the top right you will see the number of heads that resulted. Let's just say it is 52
i. Repeat by entering the total number of coins that are left after we remove all the heads into the "In \qquad Trials". Record this number. So for our example if there were 52 heads removed then there are 48 coins left; 48 goes into the box for the next trial.
j. Repeat the process until you get 5 or fewer heads.
k. Now enter data into the CAS feature of Core Math Tools:
i. Remind students how to enter data
ii. Show them how to create a slider to find an equation
iii. In $Y=$ type in " $y=a^{*}(1 / b)^{\wedge} x$ " then Enter
iv. Check the box next to "Graph $\mathrm{y}=\mathrm{a}(1 / \mathrm{b})^{\wedge} \mathrm{x}$ "
v. In the Graph tab you can move the sliders for a and b to find a model for your data
vi. To adjust the range for a and/or b, double click on the box with the letter and set a new maximum value.

