Advanced Quantitative Reasoning Meaningful Mathematics for High School Seniors

Gregory D. Foley
Daniel A. Showalter
Ohio University

NCTM Denver
18 April 2013

NCTM (2006) says, "Every student should study mathematics every year through high school, progressing to a more advanced level each year."

This talk presents rich problems

- that seniors find engaging,
- that connect a wide range of mathematics statistics, and modeling, and
- that leverage mathematical action technologies and classroom discourse.
\qquad
\qquad
\qquad
\qquad
\qquad

Advanced Quantitative Reasoning (AQR) is a course in mathematics, statistics, and modeling for students who have completed Algebra I, Geometry, and Algebra II-or Integrated Mathematics I-III.

More and more states are requiring students to complete 4 years of high school mathematics (Zinth, 2012). AQR is a 4th-year course designed for the average student.

The $A Q R$ project is developing and testing student materials and teacher resources (75% done) for such a course. AQR has pilot-tested textbook materials for the past four school years and now is field-testing them at 10 high schools in 2012-2013.

Our society thrives on numbers, yet many high school graduates are ill-equipped to make informed judgments using quantitative information.

Many graduates are not ready for the mathematical and statistical demands of college, with $\mathbf{3 5 . 1 \%}$ of U.S. college mathematics enrollments in remedial courses: $\mathbf{1 . 4}$ million out of $\mathbf{3 . 9}$ million in fall 2010.
(Kirkman, Blair, \& Maxwell, 2012)

Perhaps the worst thing that can happen to a student at the end of his or her secondary mathematics preparation is to enter college not having studied mathematics after a lapse of a year or more.
(Seeley, 2004, p. 24)

NCTM Math Takes Time position statement (2006):

- Every student should study mathematics every year through high school, progressing to a more advanced level each year.
- All students need to be engaged in learning challenging mathematics.
- At every grade level, students must have time to become engaged in mathematics that promotes reasoning and fosters communication.
- Evidence supports the enrollment of high school students in a mathematics course every year, continuing beyond the equivalent of a second year of algebra and a year of geometry (Adelman, 1999, 2006).
\qquad

The aims of the AQR springboard course are

- to reinforce, build on, and solidify the student's working knowledge of middle grades mathematics through Algebra I, Geometry, and Algebra II
- to develop the student's quantitative literacy for effective citizenship, for everyday decision making, for workplace readiness, and for postsecondary education
- to develop the student's ability to investigate and solve substantial problems and to communicate with precision
- to prepare the student for postsecondary course work in STEM and non-STEM fields - and
- for students who complete the course in the 11th grade-to prepare them to study AP Statistics, AP Computer Sciences, or Precalculus in their senior year of high school.

Common Core conceptual categories for high school mathematics

- Number \& Quantity
- Algebra
- Functions
- Modeling
- Geometry
- Statistics \& Probability
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 7 \qquad
\qquad
\qquad

Common Core standards for mathematical practice

1. Make sense of problems and persevere in solving them
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others. [mathematical communication]
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Technology: A key tool for learning mathematics, statistics, and modeling

- Technology as amplifier, reorganizer, and catalyst to support learning
- Technology as a set of interconnected representational tools
- Technology as tools for structural exploration of ideas and relationships
- Technology as tools for measurement and for gathering genuine data
- Technology as tools for displaying content and interacting with students and content
- Technology as tools for sharing information: Internet, Moodle, Webinar

Technology: TI-nspire CAS, GeoGebra, . . .

- Software with CAS, Graphing, Interactive geometry, Lists \& spreadsheet, Data \& statistics
- Linked representations
- Handheld, PC, Mac, and iPad versions
- Linking of hardware: Networking and data transfer
- Teacher-led and interactive instruction
- 3D, Trimble SketchUp, Spherical Easel, Google Earth

Advanced Quantitative Reasoning

Course Outline

Core. Quick questions, explorations, investigations, examples, exercises, and increasingly involved projects and presentations
Four parts (units, modules)

- Number and Quantity
- Statistics and Probability
- Modeling with Algebra and Functions
- Modeling with Geometry

Some AQR number and quantity topics

- Problem-solving strategies
- Quantity, measurement
- Fractions, decimals, percent
- Proportional reasoning
- Quarterback ratings and readability indices
- ID numbers and check digits
- Orders of magnitude (Richter scale) analysis
- Transition matrices
- Probability

Fermi question

Roughly how many basketballs would it take to circle the Earth at the equator?

Probability task

Drug testing. Suppose a recent national study indicates that about 3% of high school athletes use steroids and related performance-enhancing drugs. Suppose further that the accuracy of the standard test used is roughly 97%. That means that 3% of the time, the test returns an incorrect result (either a false positive or a false negative).

What is the probability that a randomly selected student athlete who tests "positive" is actually a user of performance-enhancing drugs?

\qquad
\qquad

Designing and conducting a statistical study
Is a DoubleStuf® Oreo cookie really double
\qquad
\qquad stuffed?
\qquad
\qquad
\qquad
\qquad

What concepts and relationships are involved?
Ancient Alligators. Alligators, crocodiles, and their relatives and ancestors are known as crocodilians. On Earth for 250 million years, they have survived mass extinctions that killed other animals. The modern American alligator thrives in the coastlands of the Southern states from Texas to the Carolinas. A typical adult male is about 12 ft long and weighs 800 lb .

Suppose that a scientific team excavates an ancient crocodilian with the same proportions (same shape) but twice as long (24 ft) as an adult male American alligator. How much would you expect this ancient beast to have weighed?

\qquad
\qquad
\qquad
\qquad
\qquad

What is the relationship between the area and the side length of an equilateral triangle?

Data for the Side Length and Corresponding Area of an Equilateral Triangle							
Side length s	0	2	5	7	10	13	16
Area A	0	1.7	10.8	21.2	43.3	73.2	110.9

Modeling activity: Zipf's law

"In a given country ... , the largest city is always about twice as big as the second largest, and three times as big as the third largest, and so on" (Strogatz, 2009).

How accurate is this model for city population in the United States?
2010 U.S. Census Bureau Data (in millions of persons)
$\begin{array}{ll}\text { New York } & 8.175\end{array}$
Los Angeles $\quad 3.793$
Chicago 2.696
Houston 2.099
Philadelphia $\quad 1.526$
Phoenix 1.446
San Antonio $\quad 1.327$
San Diego $\quad 1.307$
Dallas $\quad 1.198$
23
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Modeling activity: Zipf's law

Modeling longitude and latitude with fruit

(a) Identify two antipodal points as the north and south poles. Mark and label the two points as N and S.
(b) Draw an arc from the north pole to the south pole. Label it as 0° longitude. This is the prime meridian.
(c) Locate and mark the midpoint of the prime meridian. Mark the midpoints for 4 or 5 other meridians (lines of longitude). Draw in the great circle that represents the equator.
(d) With the aid of a globe, an atlas, or the Internet-locate, mark, and label points for London, England; Quito, Ecuador; and your home city or county on the orange.

Geometric modeling: Spherical geometry
If you are traveling along a great-circle shortest path from Athens, Texas to Athens, Greece will you pass closer to Athens, Georgia, USA or Athens, Ohio?
\qquad

Advanced Teacher Capacity: An associated professional development initiative

- Two-week summer institutes (60 contact hours).
- Two daylong follow-up workshops plus online support
- TPACK: technology, pedagogy, \& content knowledge
- Technology: TI- n spire (additional tools for Modspar)
- Pedagogy: Tasks, tools, and talk
- QUANT: Statistics and probability
- Modspar: Modeling and spatial reasoning

QUANT: Quantifying uncertainty and analyzing numerical trends

- Words of statistics; measurement and data collection
- Formulating statistical questions and designing of statistical studies
- Data analysis and descriptive statistics
- Combinatorics, random processes, and probability, including conditional probability
- Using data, probability, and distributions to justify conclusions and to make decisions

Modspar: Modeling and spatial reasoning

- What is modeling?
- Discrete dynamical systems: Finite differences, difference equations, web plots
- Recursively and explicitly defined functions
- General proportional model and reexpressing data
- Modeling with polar and parametric equations
- Three-dimensional geometry and modeling
- Spherical geometry and modeling \qquad

Acknowledgement and appreciation

- Thomas R. Butts, Stephen W. Phelps, Joseph T. Champine, Carmen Wilson, Allen Bradley, Tarasa Sheffield, Mary Harmison, Andy Lovejoy, Sara Vance, Wei Lin, George A. Johanson, Jeffery Connor, Laura J. Moss, Jeremy F. Strayer, Michael Todd Edwards, Sigrid Wagner, Pascal D. Forgione, Jr., Cathy L. Seeley, Michelle Reed, Jerry L. Moreno, Ralph Martin, S. Nihan Er, Michael A. Smith, Heba Bakr Khoshaim, Maha Alsaeed, David A. Young, Ruth M. Casey, Rebekah Boyd, Douglas Roberts, Michael Houston, John Ashurst, Michael Lafreniere.
- Advanced Teacher Capacity QUANT and Modspar scholars
- A host of other colleagues, graduate students, and support staff
- Our wives and families

Acknowledgement and appreciation

\qquad
ATC has been supported by grants from

- the Improving Teacher Quality Program of the Ohio Board of Regents,
- the Mathematics Professional Development Program of the Ohio Department of Education,
- the U.S. Department of Education,
- the South East Ohio Center for Excellence in Mathematics and Science, and
\qquad
- Texas Instruments, Inc.

