Ideas for Revisiting Geometry Proofs in Algebra Class

André Mathurin
Bellarmine College Preparatory (San Jose, CA)

Competent algebra students know whether two lines are parallel or perpendicular by looking at the slopes, but can these students also communicate how slope values connect to geometry-based proofs of parallelism and perpendicularity? Participate in activities that offer ways for algebra students to revisit geometric concepts and proofs.

Contratedresourashiomrition
amathurin@bcp.org
http://www.tinyurl.com/mathurin-NCTM2013

Ideas for Revisiting Geometry Proofs in Algebra Class

André Mathurin

Bellarmine College Preparatory (San Jose, CA)

Preliminaries

* Goals
* Format
* Disclaimers

© Preliminaries

* Goals
\checkmark Promote Finding/Making Connections
\checkmark Emphasize the Importance of Justification
* Format
* Disclaimers

ts Preliminaries

* Goals

\checkmark Promote Finding/Making Connections
\checkmark Emphasize the Importance of Justification

* Format
\checkmark Identify Common Topics in Algebra \& Geometry
\checkmark Ask an Algebra-Framed Question
\checkmark Seek Out a Geometric Justification
* Disclaimers

© Preliminaries

* Goals

\checkmark Promote Finding/Making Connections
\checkmark Emphasize the Importance of Justification

* Format
\checkmark Identify Common Topics in Algebra \& Geometry
\checkmark Ask an Algebra-Framed Question
\checkmark Seek Out a Geometric Justification
* Disclaimers
\checkmark Just Say No to Analytic Geom/Trig
\checkmark Don't Alert the Newspapers
\checkmark Your Call: Loosey-Goosey or Extreme Rigor
\checkmark Look for the Hidden Gem

(1) Visualizing SQUARE ROOTS

$$
\begin{aligned}
& \text { Is it possible to construct a line segment that has } \\
& \text { the length } \sqrt{\boldsymbol{n}} \text { for any positive integer } \boldsymbol{n} \text { ? }
\end{aligned}
$$

(1) Visualizing SQUARE ROOTS

$$
\begin{gathered}
\text { Is it possible to make a line segment that fas the } \\
\text { length } \sqrt{\boldsymbol{n}} \text { for any positive integer n? }
\end{gathered}
$$

Can you make a segment that has length $\sqrt{2}$?
Explain how to do it using Geometry.

(1) Visualizing SQUARE ROOTS

$$
\begin{aligned}
& \text { Is it possible to make a line segment that fhas the } \\
& \text { length } \sqrt{n} \text { for any positive integer } \boldsymbol{n} \text { ? }
\end{aligned}
$$

Can you make a segment that has length $\sqrt{2}$?
Explain how to do it using Geometry.
1st Step: Draw a segment and label it $\overline{A B}$
$2^{\text {nd }}$ Step: Construct a line through A that is perpendicular to $\overline{A B}$
$3^{\text {rd }}$ Step: On the line, construct $\overline{A C}$ so that it is congruent to $\overline{A B}$
$4^{\text {th }}$ Step: Draw the segment $\overline{B C}$

(1) Visualizing SQUARE ROOTS

$$
\begin{gathered}
\text { Is it possible to make a line segment that fas the } \\
\text { length } \sqrt{\boldsymbol{n}} \text { for any positive integer n? }
\end{gathered}
$$

Can you make a segment that has length $\sqrt{3}$?
Explain how to do it using Geometry.

(1) Visualizing SQUARE ROOTS

y

> IT IS possible to make a line segment that has the length $\sqrt{\boldsymbol{n}}$ for any positive integer \boldsymbol{n} ?

Justify why the above statement is true.

(1) Visualizing SQUARE ROOTS

$2 y=$

> IT IS possible to make a line segment that fas the length $\sqrt{\boldsymbol{n}}$ for any positive integer \boldsymbol{n} ?

Justify why the above statement is true.

Proof By Induction

We've shown that it can be done for up to $\mathrm{n}=3$
Assume that we can make a line segment that has the length \sqrt{n}
$1^{\text {st }}$ Step: Draw a segment with length \sqrt{n} and label it $\overline{A B}$
$2^{\text {nd }}$ Step: Construct a line through A that is perpendicular to $\overline{A B}$
$3^{\text {rd }}$ Step: On the line, construct $\overline{A C}$ so that it has length $\sqrt{1}$
$4^{\text {th }}$ Step: Draw the segment $\overline{B C}$
By the Pythagorean Theorem, $(\overline{A B})^{2}+(\overline{A C})^{2}=(\overline{B C})^{2}$
So $(\sqrt{n})^{2}+(\sqrt{1})^{2}=n+1=(\overline{B C})^{2}$
Thus $\overline{B C}=\sqrt{n+1}$

(1) Visualizing SQUARE ROOTS

$$
\begin{aligned}
& \text { IT IS possible to make a line segment that fas the } \\
& \text { length } \sqrt{\boldsymbol{n}} \text { for any positive integer } \boldsymbol{n} \text { ? }
\end{aligned}
$$

Now you can make an Irrational Ruler

(1) Visualizing SQUARE ROOTS

$$
\begin{aligned}
& \text { IT IS possible to make a line segment that flas the } \\
& \text { length } \sqrt{\boldsymbol{n}} \text { for any positive integer } \boldsymbol{n} \text { ? }
\end{aligned}
$$

2 How do you KNOW the lines are Paralle?

> Two lines with the same slope are parallel. Why is that?

(2) How do you KNOW the lines are Paralle?

Two lines with the same slope are parallel. Why is that?

Because lines with the same slope don't intersect. Why?

Because if they have the same slope, they are going the same direction.
OK-but what about the same direction means are they parallel?
They are moving at the same rate, so one never catches up.

(2) How do you KNOW the lines are Paralle?

Parallel \& Perpendicular

(2) How do you KNOW the lines are Perpendicular?

(2) How do you KNOW the lines are Perpendicular?

y

3 Getting to the CENTER of Things

$$
\begin{aligned}
& \text { Can a single circle be drawn through any three non-collinear } \\
& \text { points on the coordinate plane? }
\end{aligned}
$$

3 Getting to the CENTER of Things

Can a single circle be drawn through any three non-collinear points on the coordinate plane?

Before tackling the above task let's start with the following: Find the center of the circle that contains the points $(\mathbf{3}, \mathbf{6}),(\mathbf{1}, \mathbf{1})$, and $(5,2)$

3 Getting to the CENTER of Things

Can a single circle be drawn through any three non-collinear points on the coordinate plane?

Before tackling the above task let's start with the following: Find the center of the circle that contains the points $(\mathbf{3}, \mathbf{6}),(\mathbf{1}, \mathbf{1})$, and $(5,2)$

4 Classifying Triangles WITHOUT Using a Protractor

Given two edges of known length, what are the lengths for a third edge that will result in the formation of an obtuse triangle?

4 Classifying Triangles WITHOUT Using a Protractor

$$
\begin{aligned}
& \text { Using Geometry-6ased reasoning, show that a triangle with } \\
& \text { sides measuring 6, 20, and } 23 \text { is an obtuse triangle. }
\end{aligned}
$$

4 Classifying Triangles WITHOUT Using a Protractor

Using Geometry-Gased reasoning, show that a triangle with sides measuring 6, 20, and 23 is an obtuse triangle.

Systems of Inequalities/Triangle Inequality Theorem \& Inscribed Angles

4 Classifying Triangles WITHOUT Using a Protractor

Uling Geometry-based reasoning, show that a triangle with sides measuring 6, 20, and 23 is an obtuse triangle.

Systems of Inequalities/Triangle Inequality Theorem \& Inscribed Angles

4 Classifying Triangles WITHOUT Using a Protractor

Given two edges of known length, what are the lengths for a third edge that will result in the formation of an obtuse triangle?

Systems of Inequalities/Triangle Inequality Theorem \& Inscribed Angles

