The Mathematics of Angry Birds
NCTM 2013
John Diehl
Hinsdale Central HS (Retired)
Ismael Zamora Hinsolale South HS, IL

The Main Objectives

- Use data from the flight of an angry bird to develop models for the motion -Explore the major variables of angle and initial velocity
- Explore the parametric relation

$$
\begin{gathered}
x=\left(v_{0} \cos \theta\right) t+x_{0} \\
y=-0.5 g t^{2}+\left(v_{0} \sin \theta\right)+y_{0}
\end{gathered}
$$

A Demonstration of Data Collection

自 [EXE]:Plot [EXIT]:End Plot

Create a Model by Regression

自 Press [OPTN]

More About These Coefficients Later!

$$
\begin{aligned}
& \text { 鼻 } \\
& \text { QuadReg } \\
& \mathrm{a}=-0.0145123 \\
& \mathrm{~b}=2.39544602 \\
& \mathrm{c}=5.98181537 \\
& \mathrm{r}^{2}=0.99938941 \\
& \mathrm{MSe}^{2}=1.1348274 \\
& \mathrm{y}=\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}
\end{aligned}
$$

Let's Explore Horizontal Position vs. Time

自

Interpret Both Coefficients of the Model

Let's Explore Vertical Position vs. Time

自

Interpret the Coefficients of this Model

$$
\begin{aligned}
& \text { 臬uadReg } \\
& a=-4.9358911 \\
& \mathrm{~b}=45.1151026 \\
& \mathrm{c}=-0.2461388 \\
& r^{2}=0.99177329 \\
& \mathrm{MSe}=15.2901893 \\
& y=a t^{2}+b t+c
\end{aligned}
$$

COPY DRAW

Let's Explore the Angle and Initial Velocity

$$
\begin{aligned}
& v_{0} \sin (t)=45.115 \\
& v_{0} \cos (t)=18.866
\end{aligned}
$$

-There are several ways to compute the values

Method 1 - Division

$$
\begin{gathered}
v_{0} \sin (t)=45.115 \\
v_{0} \cos (t)=18.866 \\
\tan (t)=45.115 / 18.866
\end{gathered}
$$

JUMP DELETE RMAT MATH

Method 1 - Substitution

$$
\begin{gathered}
v_{0} \cos (t)=18.866 \\
v_{0}=18.866 / \cos (t)
\end{gathered}
$$

Method 2 - Trig Identity

$$
\begin{gathered}
{\left[v_{0} \sin (t)\right]^{2}+\left[v_{0} \cos (t)\right]^{2}=v_{0}{ }^{2}} \\
v_{0} \sin (t)=45.115 \\
v_{0} \cos (t)=18.866
\end{gathered}
$$

$45.115^{2}+18.866^{2}$	
	2391.289181
$\sqrt{\text { Ans }}$	
\square	48.90080961

JUUP DELETE CMAT MATH

Checking the Parametric Model

$$
\begin{gathered}
X=48.90 \cos (67.31) T-4.40 \\
Y=-4.94 T^{2}+48.90 \sin (67.31) T-0.25
\end{gathered}
$$

Checking the Parametric Model

自 [4ath Deg Norm1 a+bi

Revisiting the (x, y) Model

$$
\begin{gathered}
x=\left(v_{0} \cos \theta\right) t \\
\frac{x}{v_{0} \cos \theta}=t \\
y=\frac{-1}{2} g t^{2}+\left(v_{0} \sin \theta\right) t+y_{0} \\
y=\frac{-1}{2} g\left(\frac{x}{v_{0} \cos \theta}\right)^{2}+\left(v_{0} \sin \theta\right)\left(\frac{x}{v_{0} \cos \theta}\right)+y_{0}
\end{gathered}
$$

$$
y=\frac{-g}{2\left(v_{0} \cos \theta\right)^{2}} x^{2}+(\tan \theta) x+y_{0}
$$

Revisiting the (x, y) Model

-4.9	
$\begin{aligned} & (48.9 \cos 67.3)^{2} \\ & -0.01375989768 \end{aligned}$	
\square	
DEELINE DEL-ALI	

QuadReg
$\mathrm{a}=-0.0145123$
$\mathrm{~b}=2.39544602$
$\mathrm{c}=5.98181537$
$\mathrm{r}{ }^{2}=0.99938941$
$\mathrm{MSe}=1.1348274$
$\mathrm{y}=\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}$
COPY [DRAW

Explorations

Use the graphs of $(t, x),(t, y)$, and (x, y) to compute the results:

Q1 What is the bird's position at time $\boldsymbol{t}=\mathbf{2 . 5}$ seconds?

Q2 How long is the bird in flight?

Q3 What is the time when the bird is at maximum height?

Q4 What is the maximum height?

Q5 At what time(s) is the bird at height 60 meters?

Q6 How far did the bird fly horizontally?

Q7 What is the height when the horizontal position is 150 meters?

Q8 What is the horizontal position when the height is $\mathbf{6 0}$ meters?

