#### The Mathematics of Angry Birds

#### NCTM 2013

#### John Diehl Hinsdale Central HS (Retired)

#### Ismael Zamora Hinsdale South HS, IL







# **The Main Objectives**

Use data from the flight of an angry bird to develop models for the motion
Explore the major variables of angle and initial velocity
Explore the parametric relation

x = (v<sub>0</sub>cosθ)t + x<sub>0</sub>
y = -0.5gt<sup>2</sup> + (v<sub>0</sub>sinθ) + y<sub>0</sub>

YOUR 360 SOLUTION

Training

Resources



#### **A Demonstration of Data Collection**



## **Create a Model by Regression**



#### **More About These Coefficients Later!**



#### Let's Explore Horizontal Position vs. Time



#### **Interpret Both Coefficients of the Model**



#### Let's Explore Vertical Position vs. Time



#### **Interpret the Coefficients of this Model**



Let's Explore the Angle and Initial Velocity

 $v_0 sin(t) = 45.115$  $v_0 cos(t) = 18.866$ 

# •There are several ways to compute the values





#### **Method 1 - Division**

v<sub>o</sub>sin(t) =45.115
v<sub>o</sub>cos(t) =18.866
tan (t) = 45.115/18.866



#### **Method 1 - Substitution**

 $v_0 cos(t) = 18.866$  $v_0 = 18.866 / cos(t)$ 







### Method 2 – Trig Identity

 $[v_0 sin(t)]^2 + [v_0 cos(t)]^2 = v_0^2$   $v_0 sin(t) = 45.115$  $v_0 cos(t) = 18.866$ 



Technolog

Training

Resources

YOUR 360 SOLUTION



**Checking the Parametric Model** 

 $X = 48.90 \cos(67.31)T - 4.40$ 

 $Y = -4.94T^2 + 48.90 \sin(67.31)T - 0.25$ 



#### **Checking the Parametric Model**





#### **Revisiting the (x, y) Model**







#### **Explorations**

Use the graphs of (*t*,*x*), (*t*,*y*), and (*x*,*y*) to compute the results:

Q1 What is the bird's position at time *t*=2.5 seconds?

Q2 How long is the bird in flight?

Q3 What is the time when the bird is at maximum height?

Q4 What is the maximum height?

Q5 At what time(s) is the bird at height 60 meters?

Q6 How far did the bird fly horizontally?

Q7 What is the height when the horizontal position is 150 meters?

Q8 What is the horizontal position when the height is 60 meters?

