Good Morning Las Vegas

\#163 Three Great Tasks

 Jeanne Chmelik jc@math4infinity.orgAttendees will distinguish between task and process, noting that both are invaluable when attacking and delivering CCSSM Content and Practices

Session \#163 Goals

Participants will either:

1. Actively Engage in a Second Grade Great Task, or
2. Identify Evidence of CCSSM Math Practices

Attendees will leave the session with copies of one great task and have web access to at least 3 great tasks per grade level k-6

Challenge(s)

> How to get all K-5 teachers in 4 elementary schools implementing CCSSM Math Practices Systemically????
...And then to keep doing it long enough to see if it is working?

D41 Great Tasks Implementation 2011-2014

Come up with a plan

Convince others

Model for teachers in small groups

Provide structures and time for PLC reflection of process

Accountability

Fundamental to "The Plan" It's Not Just A Task!

It's a Systemic Process Used to "Secretely" PD Teachers in Identification of Math Practices
(then they can do it every day while they teach math - not for isolated "acts of mathematics"

20 ${ }^{\text {th }}$ Century Task

How I see math word problems: If you have 4 pencils and I have 7 apples, how many pancakes will fit on the roof? Purple, because aliens don't wear hats.
your cards
someecards.com

The Plan Part 1

Identify systemic weakness based on data with math committee members
(using state test results and NWEA map, we determined problem solving, writing in math, place value and fractions needed a boost)

Ask for PAID summer (2011) curriculum development time (got it!)

Beg math committee members (and super math teachers) to help develop the tasks
(they fell for it!)

The Plan Part 2

Provide PD to "curriculum developers" in CCSSM in Math Practices
(I used the PD from NCSM Indianapolis!)
Gather/Provide researched resources
(I brought only those I've observed being used effectively already in d41 classes!)

I modeled one task with the window frame (My personal favorite to use when teaching teachers the math!)

Create
(Wow - can teachers create great stuff when given the time, resources and purpose!)

Gather Favorite d41 Teachers' Resources; Choose Great Problems

The
Problem Solver ${ }^{-}$

Year One 2011-2012

Required 3 tasks per grade level

All 3 to use the window frame format

Not graded

Non-negotiable: PLC time to fill out evaluation forms and discuss evidence of math practices

Teacher Evaluation: Fifth Grade Great Task \#1

School: Grade: Fifth

Teacher:
Overall Raing
(out of 13 pts):
Task Tive: Painted Cubes

Matiomatcal Prachice	$\begin{aligned} & \text { Evidence? } \\ & \text { Yes or No } \end{aligned}$	GREAT TASK?	$\begin{aligned} & \text { Evidence? } \\ & \text { Yes or No } \end{aligned}$
1. Make sense of problems and persever in solving them.		1. A deep, nch, interging math problem	
2. Reason abstracty and quantatively.		2. Meets most, if not al, of the CCS5 mathematical practices	
3. Constuct wable aguments and cntque the reasoning of othes.		3. Reverant 10 kods lives	
4. M00e win mathemaics.		4. Meets more than one of the CCS5 content standards	
5. Use appropnail tools staieg caly		5. Open ended	
6. Afiend to precision.		15 THIS TASK MATHEMATICALLY APPROPRIATE?	
7. Look for and make use of stuctue.			
8. Look for and expless neguarty in repeated reasoning.			

CCSS CONTENT STRNDREDS

Damer	Clustar	Sandas
	Andyre gallami and relatenkign	 wagh the andarat gein an a coardinata glave
Menuramer: and Duta (S.MD)	Dsametic manuramant undentand carcosth of velume and ratute valume to muldaplicatien and to exdijen	escoses ef valume menuromen: "ene cubic uni"' af valume wed an beused to manure valume 3b;h uelid fin-re which en begasked willeut gusy er evolagy unim π unit ouben ia ued to keve a valume ef n oubic unita.
Menurament and Duta (9.MD)	Cosmethe menuraman: undeniand concosta of velume and ratate valume to muldaplicaben and to nediden	4: Menurt valuma by countra unit cuben, uing cubic on, subic in oubic t, and improvised unity.
Menurbment and Duta ($\mathrm{A} . \mathrm{MD}$)	Gasmetic menuraman: undeniand aserosin of valume and ratate valume to muldalicalien and to addidan.	5: Nelate velume to the egorifien ef muldiglicaiten and addiden and ualve ral warld and mallataical gmeblemx invalving valume

Model
Task with
Teachers
First

PLC Reflection,
Formal Evaluation of Task given to
District Level

After year one...now what?

Take all PLC Evaluation forms, analyze, and have difficult math committee conversations

Ask for PAID summer (2012) curriculum development time

2012...More Summer Work?

Beg math committee members (and super math teachers) to continue to polish the process

Create 3 new tasks per grade level for a total of 6
Create Rubrics and Math Practices Checklists
Plan a teacher training day for School Start Up (August) focused on Great Tasks and Math Practices

Great Task Changes Based on District-Wide PLC Feedback

-pink tasks have been deleted,
-other tasks have been edited/improved based on feedback, -some tasks moved into different trimesters

Grade	Trimester One	Trimester Two	Trimester Three
Kindergarten	Pattern Block Fish	Creature Features	Frames of Ten
First	Cover the Caterpillar	Way to Pay	Scrabble Number Sentences
Second	In a Row	Tile Maker	Dream Day
Third	Sub Sandwich	Build a Fence	Fraction Design
Fourth	Day at the Pier	Snowman	What's the Point?
Fifth	Painted Cubes	It's What Inside that Counts	If the World Were a Village

Year Two 2012-2013

6 tasks per grade level

Non-negotiable: PLC to choose at least 3 to incorporate the window frame

Continued PLC conversation around student work samples, evaluation forms for new tasks, strategies for implementation

2012-2013...green task is placed in pinnacle

Grade	Trimester One		Trimester Two		Trimester Three	
	Task One	Task Two	Task Three	Task Four	Task Five	Task Six
K	How Many Rectangles (color tiles)	Pattern Block Fish (pattern blocks)	Attribute Trains (attribute blocks)	Fractions to Fourths (buttons)	Frames of Ten (ten frames place value)	Feed the Birds (counters)
1	The Disappearing Train (snap cubes)	Cover the Caterpillar (pattern blocks)	Invitations (ruler)	Scrabble Number Sentences (letter tiles with pt. values)	Making Fractions (geoboard)	Way to Pay (base ten blocks and/or money)
2	Toy Factory (pattern blocks and coins)	Build a Bug House (place value blocks and place value mat)	Valentine's Day Cards (rulers)	Tile Maker (pattern blocks)	Fraction Pairs (cuisenaire rods)	Dream Day (Judy clocks and charts)
3	Sub Sandwich (ruler and scale)	Thanksgiving Turkey (elapsed time, chart, clock)	Build a Fence (color tiles)	Geometric Design (geoboards)	Fraction Design (pattern blocks)	Heart Rate (place value mat)
4	Angles and Times (clocks)	Day at the Pier (elapsed time, money, charts)	Making Eighths (geoboard)	Snowman (charts/tables)	Part and Whole (geodot paper \& fraction puzzles)	You Bought a Zoo (place value mat)
5	Chairs Around the Table (counters)	If the World Were a Village (place value mat)	Forming Fractions (geoboards)	It's What Inside that Counts (tangrams)	Plan a Park (scale/data table)	Painted Cubes (snap cubes)

And...

One task (those that were piloted year one and considered "worthy") per trimester will be graded using rubrics and put into computerized, standardsbased gradebook

Demonstrates Application of the Common Core Mathematical Practices

(replacing the old problem solving standard)

Sample Rubric

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Mathematical Practices \& \multicolumn{2}{|l|}{Not Meeting} \& \multicolumn{2}{|l|}{Progressing} \& \multicolumn{2}{|l|}{Meeting} \& \multicolumn{2}{|l|}{Advanced}

\hline Make sense of problems and persevere in solving them. \& \square

\square \& Student displayed no success in understanding how to tile a large hexagon. Did not attempt the problem. \& \square \& | Student understood that he/she had to use the Shape Value Key, but did not arrive at a correct solution. |
| :--- |
| He /she made an attempt to solve for one solution. | \& \square

\square
\square
\square

\square \& | The task was completely understood. Student used the Shape Value Key correctly. Student correctly found the total value inside the shape. |
| :--- |
| Student worked diligently toward a solution. | \& \square

\square \& The mathematically proficient student completely understood the task and used the Shape Value Key The student consistently worked toward more than one solution. He /she planned a solution pathway and continually asked "Does this

\hline
\end{tabular}

Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

MP 1: Make sense of problems and persevere in solving them. (Understand the problem and keep working until you are satisfied with a solution)

Your 2012-2013 Experience with CCSS Mathematical Practices

Student Names									
1.									
2.									
3.									
4.									

Year Three 2013-2014

Only One Change "power math practice"

FIRST GRADE Great Tasks
TRI 1 Task 1: Cover the Caterpillar
TRI 1 Task 2: The Disappearing Train
TRI 2 Task 3: Invitations
TRI 2 Task 4: Scrabble Number Sentences
TRI 3 Task 5: Making Fractions
TRI 3 Task 6: Way to Pay

CCSS Math Practice Focus
(All MP 1, 3 \& 6)
MP 7
MP 4
MP 5
MP 8
MP 4 and MP 7
MP 2

Your Turn: Choose One Role

Participant (pretend you are a second grader doing a great task called "tile maker")

Math Practice Investigator (MPI) (observe

 the process watching for evidence of any Math Practice)
"I Wonder..."

What part of this process might assist in decreasing math anxiety while problem solving?

How are MP1 (make sense), MP 3 (viably argue), MP6 (precision) evident during this task?

How might a classroom teacher differentiate for all students?

What grouping (homogeneous abilities or heterogeneous abilities) method is most effective?

Math All Around Us

25\% OFF for all Convention Attendees

7IITIIITIUTM

You are the Tile Maker

Checklist for the students:

\checkmark Fill in the hexagon using triangles, trapezoids, and hexagons. Your polygons may not fall outside the lines.
\checkmark Trace each pattern block
\checkmark Find the total value inside the shape using the pattern block key
\checkmark Be ready to explain your work with MATH!

Shape Value Key
Each shape is worth the following value.

$=9$
$=18$

Once Around

I used...
____ triangles, trapezoids,
and ____ hexasons.

The value of my tiles was \qquad
The strategy I used to find the value was

Wrap Around

 Guiding Math Questions

- How did you come up with this value?
- Why did you choose that stratesy?
- How did you decide which blocks to use in your design?
- What did you find easy or difficult?

Day 2. Exfension

Extension Window Frame Question:

With a partner, create a symmetrical design inside the hexagon template. You must use triangles, rhombi, trapezoids, and hexagons in your design. Find the value of the rhombi using the shape value key. Finally, find the value of your symmetrical design.

= ?

Shape Value Key
Each shape is worth the following value.

$=18$

Debrief

What intentional methods does the facilitator employ to engage children in this task?

What part of this process might assist in decreasing math anxiety while problem solving?

How are MP1 (make sense), MP 3 (viably argue), MP6 (precision) evident during this task?

How might a classroom teacher differentiate for all students?

What grouping (homogeneous abilities or heterogeneous abilities) method is most effective?

How do I get these tasks?

- www.math4infinity.org
- Conference materials

"What happens if you get scared half to death twice?"(Steven Wright)
 www.mustshareiokes.com/page/Steven + Wright + Jokes

