## Doing Statistics with Real Biology Data

Luke Wilcox Kentwood, Michigan

## How is knowledge stored?



Biologists crossed a large random sample of heterozygous red eye, normal winged fruit flies (RrNn with RrNn). They believe that the phenotypic ratio should be 9:3:3:1.

## Phenotypic Results:

Red Eyes and Normal Wings $=731$
Red Eyes and Vestigial Wings = 241
Sepia Eyes and Normal Wings = 229
Sepia Eyes and Vestigial Wings = 63

Does the data provide significant evidence that the biologists' predictions are wrong?

CHI-SQUARE TABLE
Does the data provide significant evidence that the biologists' predic
Degrees of Freedom
Null $\dot{H}$ ypothesis: $\hat{\text { 鳥here is no significant difference }}$ observed and expected values

$$
\text { Total \#of flies }=731+241+229+63=1264
$$

| $p$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.05 | 3.84 | 5.99 | 7.82 | 9.49 | 11.07 | 12.59 | 14.07 | 15.51 |
| 0.01 | 6.64 | 9.32 | 11.34 | 13.28 | 15.09 | 16.81 | 18.48 | 20.09 |


| phenotype | observed | expected | $(0-e)$ | $(0-e)^{2}$ | $(0-)^{2} / e$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| red/normal | 731 | 812.57 | -81.57 | 6653.66 | 8.19 |
| red/vestigial | 241 | 270.86 | -29.86 | 891.602 | 3.29 |
| sepia/Nomal | 229 | 270.86 | -41.86 | 1752.26 | 6.47 |
| sepia/vestigial | 63 | 90.29 | -27.29 | 744.74 | 8.25 |

$$
\operatorname{map}_{\text {units }}=\frac{241+229}{1264}=.371
$$

$$
\begin{gathered}
+ \\
x^{2}=26.2 \\
d F=3 \rightarrow 7.82 \leq 26.2
\end{gathered}
$$

The calculated $x^{2}$ value of 26.2 is greater than 7.82, so we reject $H_{0}$. The variation in our data couldn't have happened purely by chance. The genes are linked and are . 371 map units away from each other.

Does the data provide significant evidence that the biologists' predictions are wrong?
State: H $H_{0}$ the claimed distribution for fly phenotypes ( $9: 3: 3.1$ ) is correct $\left(K^{2}=0\right)$
$H_{a}$ : the claimed distribution for fly phenotypes is incorrect ( $x^{2}>0$ )

$$
\alpha=.05
$$

Plan $x^{2}$ goff test
Orandom $\rightarrow$ "large random sample"
(2) Independent $\rightarrow n=\frac{1}{10} N \quad$ (age $\left.*\right)=\frac{1}{10}($ lager $t)$
*intuidual doscrativions independent*
(3) Large sample $s i z e \rightarrow$ smallestexpicled value $=90.29 \geq 5$


Conclude:
Assuming to true $\left(x^{2}=0\right)$, there is $x 0$ probability of getting a $x^{2}$ value of 26.2 or more purely by chance. This provides goodeudence against null and is statistically $=$ ignificant $\Leftrightarrow \alpha=.05$. Therefore we reject to + can conclucce the claimed distribution is incorrect. The largest component of $x^{2}$ is 8.25 benue the observed of sepia, vestigral flies is much lower than expected.

## Content Goals for the lesson

- To able to formulate appropriate null and alternative hypothesis for a chi-square goodness of fit (Punnett Squares)
- To be able to check the appropriate conditions for performing inference.
- To be able to perform a chi-square goodness of fit test and make a conclusion.


## Mathematical Practices Goals

Standard 1: Make sense of problems and persevere in solving them
Standard 2: Reason abstractly and quantitatively
Standard 3: Construct viable arguments and critique the reasoning of others
Standard 4: Model with mathematics
Standard 5: Use appropriate tools strategically
Standard 6: Attend to precision
Standard 7: Look for and make use of structure
Standard 8: Look for and express regularity in repeated reasoning

## Lesson Plan

- Get groups with plants in front of them.
- Collect data.
- Groups work to write a significance test.
- Students present whiteboard solutions.
- Teacher wrap up.


## Get groups with plants in front of them



## Collect Data



## Groups work to write significance test



## Present white board solutions



## Teacher wrap up



## What did they learn?

AP Statistics students:

- Importance of controlling lurking variables when collecting data.
- Punnett squares and rules for probability lead to hypotheses.
- Relationship between chisquare test statistic and P value.

AP Biology students:

- Structure of a significance test.
- Meaning of a P-value.
- Importance of checking conditions for inference.
- Follow up analysis.


## What did they learn?



## Extension. Inquiry Based Instruction.

- (1) What question do you want to answer?
(2) How will you collect the data?
(3) What kind of significance test can you use to support your conclusion?
- t-test for claimed height
- 2 sample t-test for heights of purple/green stem
- 1 proportion z-test for distribution of leaf color


## Questions/Comments?

- Powerpoint is available through NCTM website.
- Feel free to email me at luke. wilcox@kentwoodps.org

