Helping Children Master Multiplication Facts in a Meaningful Way (617)

National Council of Teachers of Mathematics (NCTM) Annual Meeting New Orleans, LA
April 12, 2014; 9:45 a.m. - 11:00 a.m.
Amanda Ruch, amandar@uchicago.edu Gina Kling, gina.garza-kling@wmich.edu

The Center for Elementary Mathematics and Science Education, University of Chicago

Defining Fluency

The Common Core State Standards (CCSS) for mathematics describes procedural fluency as "skill in carrying out procedures flexibly, accurately, efficiently and appropriately" (Council of Chief State School Officers, 2010, p. 6).

Likewise, Baroody (2006) describes basic fact fluency as "the efficient, appropriate, and flexible application of single-digit calculation skills and is an essential aspect of mathematical proficiency" (p. 22).

Phases of Basic Fact Mastery (Baroody, 2006)

CCSS-M Expectation for Multiplication Facts

Grade 3	Fluently multiply and divide within 100, using strategies such as 3.OA.C.7 the relationship between multiplication and division (e.g., knowing that $8 \times 5-40$, one knows $40 / 5=8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.

Note: This illustrates that CCSS-M recognizes the importance of reasoning strategies (Phase 2) before expecting automaticity with their facts (Phase 3).

Developmental Sequence for Multiplication Fact Strategies

Foundational Facts*	
1. $2 \mathrm{~s}, 5 \mathrm{~s}$, and 10 s (begin these in late second grade)	Use story problems involving equal groups and arrays, skip counting, and repeated addition to learn these facts.
2. $0 \mathrm{~s}^{*}, 1 \mathrm{~s}$, Multiplication squares ($2 \times 2,3 \times 3$, etc.)	
Derived Fact Strategies	
3. Adding a group	Start with a nearby $2 \mathrm{~s}, 5 \mathrm{~s}$, or 10 s fact and add a group to derive the unknown fact. Ex: I don't know 6×8, so I think $5 \times 8=40$ and add one group of 8 to get 48 .
4. Subtracting a group	Start with a nearby $2 \mathrm{~s}, 5 \mathrm{~s}$, or 10 s fact and subtract a group to derive the unknown fact. Ex: I don't know 9×6, so I think $10 \times 6=60$ and subtract one group of 6 to get 54 .
5. Halving and doubling	Look for an even factor. Find the fact for half of that factor, then double it. Ex: I don't know 6×8, so I think $3 \times 8=24$ and double that to get 48 .
6. Near squares (adding or subtracting a group to a square).	Look for a nearby square. Find that fact and add on/subtract off the extra group. Ex: I don't know 7×6. I use $6 \times 6=36$ and add one more 6 to get 42.
7. Break apart a factor.	Decompose one of the factors into a convenient sum of known facts, find the two known facts and combine the products. Ex: I don't know 7×6. I break the 7 into 2 and 5 , because I know 2×6 and 5×6. Then I add 12 and 30 to get 42 .

* Note: 0s are foundational, but are not typically used for derived fact strategies.

Kling, G. \& Bay-Williams. J. M. (in press). Three Steps to Mastering Multiplication Facts. Teaching Children Mathematics.

Strategy Tracking Table: Multiplication Facts

Names ${ }^{\text {P }}$	Multiplication Fact Strategies						
	Foundational Facts			Derived Fact Strategies			
	2 s and 10s	5s	Squares	$\begin{aligned} & \text { Add/Subtra } \\ & \text { ct a Group } \end{aligned}$	Doubling	$\begin{gathered} \text { Near } \\ \text { Squares } \end{gathered}$	$\begin{gathered} \hline \text { Decompose a } \\ \text { Factor } \\ \hline \end{gathered}$

Kling, G. \& Bay-Williams. J. M. (2014). Assessing basic fact fluency. Teaching Children Mathematics.

