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The Activity 
A new regional airport Charlene York International Airport (CYA) is planned for northern California. Based on the 
projected volumes of passengers, the Transportation Security Agency (TSA) is planning for two passenger scanning 
stations at the airport. They are trying to decide whether to build one big area with two screening stations and one waiting 
line or to build two separate screening stations, each with its own waiting line. If they choose the latter, passengers will not 
have to walk as far from the ticket counters to a security line. They estimate that two separate stations will save on average 
two to three minutes walking time for passengers lugging along their backpacks and/or carry-on bags.  
  
As passengers go through the screening area, they move through a series of security screening steps. First, their boarding 
pass and identification are checked. Then, they wait to join a screening line. There they wait to approach a long counter 
where they begin unloading their personal items into bins to be passed through an x-ray detection device. As their personal 
carry-on items are screened, they pass through a metal detection device or a full-body scanning device. The primary 
backlog is created by the bins passing through the x-ray equipment. Each bin is looked at carefully. There is a lot of 
variability in the scanning time for a bin, because the number of bins and their contents vary from passenger to passenger. 
Sometimes a person’s bags have to be opened and the contents specially checked. 
 
Director Ralph Waldo is in charge of security planning for CYA.  He consulted with the chief analytics officer for TSA, 
Dr. Gabriela Cue. Dr. Cue explained that data analysts at TSA have found that the longest component of processing was 
the time to pass through and screen all of an individual’s carry-ons and personal property.  The average time for this x-ray 
and personal screening was 45 seconds. However, there is significant variability around this average. Approximately, one 
in every four passengers takes longer than 60 seconds to process. About one in ten passengers takes at least 105 seconds, a 
minute longer than the average. 
 
The number of passengers arriving to be screened varies throughout the day. At peak times, an estimated 152 passengers 
per hour will need to be screened. These peaks occur in the early morning and late afternoon hours. At other times in the 
day, the arrival rate can be as low as 100 passengers per hour. 
 

1.  If on average a single station can screen a passenger in 45 seconds, on average, how many passengers can one 
station screen in an hour?  At 0.75 min. per passenger, 60 ÷ 0.75=80 passengers 

 
This number represents the station’s maximum screening capacity per hour. 
 

2.  Explain why two stations would be enough to handle the peak arrival rates? 80+80 > 152 
 
The proportion of time the stations are busy is equal to the ratio of the number of arriving passengers to the passenger 
screening capacity per hour. This is also called the utilization rate. 
 

3.  What is the utilization rate during peak hours?  !"#
!"#

= 0.95 

4.  What is the utilization rate when the average arrival rate is only 100 passengers per hour?  !""
!"#

 = 0.625 
 
We use the Greek letter ρ (rho) to represent the utilization rate.  Its two components, the average rate of arrivals per hour 
and the average passenger screening capacity per hour, are represented by the Greek letters λ (lambda) and µ (mu), 
respectively. 
 

5. Write an equation that expresses ρ in terms of λ and µ.  ρ =!  
!

 

Dr. Cue explained to Director Waldo that there are queueing models that can forecast average waiting times for the two 
alternatives. These models involve polynomials that can be easily evaluated with scientific calculators or in a spreadsheet. 
The simpler formula models the two single stations as depicted in Figure 1. The formula requires as input the average 
server utilization rate, ρ.  
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At peak times, an average of 76 passengers per hour would 
approach each station. On average, the station can process a 
passenger in 45 seconds. This is equivalent to a capacity of 80 
passengers per hour. Thus, in peak times  

ρ =
76
80

= 0.95 . 

6. What assumption did we make in computing this 
utilization rate?  The arrivals will go to each station in 
equal numbers. 

 
The following formula calculates, Lq, the average number of 
passengers waiting to be screened. 

Lq =
ρ 2

1− ρ
=
0.95( )2

1− 0.95
=
0.9025
0.05

=18.05  

 
This is an average of 18.05 passengers waiting in line.  
 

The average time a customer spends waiting is defined as Wq, To determine Wq, , we manipulate a second formula known 
as Little’s Law. 

Lq = λWq

Lq
λ
=Wq

Wq =
18.05

76
= 0.2375 hours.

  

Finally, because most people would make more sense of the average number of minutes waiting in line, we convert 0.2375 
hours to 60(0.2375) = 14.25 minutes 

 
In summary, with two separate screening stations, each with its own line, there would, on average, be slightly more than 18 
passengers waiting in line at each screening station. The average waiting time would be 14.25 minutes per passenger. 
 

7. On average, what is the total number of passengers who would be 
waiting in line at the two screeners?  2(18.05) = 36.1 

 
The formula for Lq when there are two stations with one waiting line, as depicted 
in Figure 2, involves higher degree polynomials.  When there is one waiting line 
for two screeners, 

Lq =
2ρ3

1− ρ 2
. 

The average utilization rate for each station does not change with this new 
arrangement. On average, a total of 152 customers arrive per hour. However, 
working together, the two stations can process an average of 80 + 80 = 160 
passengers per hour. So, in this case,  

Lq =
2(0.95)3

1− 0.952
=
2 0.857375( )
1− 0.9025

=
1.71475
0.0975

≈17.59
.
 

Director Waldo observed that this total of 17.59 waiting for one of the two 
stations seems only slightly less than the 18.05 for the two single screening 
system. Dr. Cue pointed out that the director was not comparing the right 

numbers. To make an accurate comparison, he needs to combine the number of passengers waiting to be screened at each 
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Figure 2: One Centrally Located  
Line for Two Screening Stations 

Figure 1: A Separate Line for Each Screening Station 
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of the two separate stations. The differences become clearer when we calculate the average time a passenger spends 
waiting in line at the single line, two-sceeener system. In this instance, all of the passengers are arriving to wait in the same 
line. Now when we use Little’s formula, λ=152, and 

 

 Wq =
Lq
λ
=

17.59
152

≈ 0.116 hours, or about 6.9 minutes.  

 
Director Waldo was surprised by the large difference.  Locating the new screening stations together with one line would 
reduce average wait times by more than 7 minutes. This would easily balance out the extra few minutes of walking time 
with this design. Director Waldo wondered how large the differences would be at other times during the day. He asked Dr. 
Cue to have her staff complete an analysis for different arrival rates starting with 100 passengers per hour. She asked her 
staff to complete Tables 1 and 2 using the formulas given above. Dr. Cue also requested that her staff graph Wq for each 
system over the range provided in the Tables. 
 

8. Fill in the missing values in Table 1 below. 
 

	
   	
  

Average	
  
server	
  

utilization	
  
rate,	
  ρ	
  

One	
  combined	
  line	
  
Sum	
  of	
  two	
  	
  

separate	
  lines	
  

	
  	
   Arrival	
  rate,	
  λ	
   Lq	
   Lq	
  

Arrival	
  
Rates	
  

100	
   0.625	
   2(0.625)3/(1-­‐0.6252)=0.80	
   1.04+1.04=2.08	
  
110	
   0.688	
   1.23	
   3.03	
  
120	
   0.750	
   1.93	
   4.50	
  
130	
   0.813	
   3.16	
   7.04	
  
140	
   0.875	
   5.72	
   12.25	
  
152	
   0.95	
   17.59	
   18.05+18.05	
  =36.1	
  

Table 1: Comparison of average number of passengers waiting in line. 
 

9. Fill in the missing values in Table 2 below. 
 

	
   	
   One	
  combined	
  line	
   Sum	
  of	
  two	
  separate	
  lines	
  

	
  	
   Arrival	
  rate,	
  λ	
   Wq	
  (minutes)	
   Wq	
  (minutes)	
  

Arrival	
  
Rates	
  

100	
   60(0.80/100)=0.48	
   1.25	
  
110	
   0.67	
   1.65	
  
120	
   0.96	
   2.25	
  
130	
   1.46	
   3.25	
  
140	
   2.45	
   5.25	
  
152	
   6.94	
   14.25	
  

Table 2: Comparison of average time waiting in line. 
 

10. Using the values in Table 2 above, for which arrival rate(s) does the reduced waiting time for the single line 
model make up for the increased walking time from the ticket counters to the screening line.  140 and 152 

 
11. If the single line model is used instead of the two-line model, by how many minutes is the waiting time reduced at 

peak times?  What is the percentage reduction in waiting time?  7.31 min; 7.31/14.25≈51% 
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12. If the single line model is used instead of the two-line model, what is the percentage reduction in waiting time 
when the arrival rate is 100 passengers per hour?  0.77/1.25≈62% 

 
13. What happens to the percentage reduction as the arrival rate decreases?  It increases. 

 
Notice that in the two-line model, the number of passengers waiting in each line exceeds the total number waiting in the 
combined single line model. Thus when you add the two lines of customers in the two-line model, the total is always more 
than double the centralized example. 
 
We can use algebra to prove that statement! If 0 < ρ < 1, then we need to show that 
 

ρ 2

1− ρ
+
ρ 2

1− ρ
> 2 2ρ3

1− ρ 2
"
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ρ 2

1− ρ
>
2ρ3

1− ρ 2
.

  
Now, if we divide both sides by ρ2, we get 

 
1

1− ρ
>
2ρ
1− ρ 2

.  

 
Factoring the denominator of the right hand side yields 

 
1

1− ρ
>

2ρ
(1− ρ)(1+ ρ)

,  

 
and multiplying both sides by (1- ρ) gives us  

 
1> 2ρ
1+ ρ

.  

 
Now if we multiply both sides by 1+ ρ, the result is  
 

(1+ρ) > 2ρ. 
 

14. Why is the above statement true in this case?   0 < ρ < 1. 
 
15. When does the inequality approach equality?  As ρ  1, both 1+ρ and 2ρ  2 
 
16. When is the difference the greatest? As ρ  0, 1+ ρ  1, but 2ρ  0. 
 
 


