The Conic Sections:

From Paper Folding, to Sketches, to Equations

Terry Coes

Rocky Hill School
East Greenwich, RI
LCoes@aol.com

NCTM Annual Conference
New Orleans, LA
April 10, 2014

To make the tangents to a parabola: Draw a line and a point off the line. Fold numerous different points on the line to the point, and crease the paper.

To make the tangents to an ellipse:
Draw a circle and a point inside the circle.
Fold numerous different points on the circle to the point, and crease the paper.

To make the tangents to a hyperbola:
Draw a circle and a point outside the circle.
Fold numerous different points on the circle to the point, and crease the paper.

When you fold point T (any point on the Directrix) to point F and crease the fold, the fold line will be tangent to the parabola.

The Parabola's Equation-one version, anyway

This parabola has a focus at $\mathrm{F}(0, \mathrm{p})$, a directrix $\mathrm{y}=-\mathrm{p}$, and its vertex at the origin $(0,0)$
By the definition
$P F=P T$
$\sqrt{(x-0)^{2}+(y-p)^{2}}=\sqrt{(x-x)^{2}+(y--p)^{2}}$
Squaring and expanding:
$x^{2}+y^{2}-2 p y+p^{2}=y^{2}+2 p y+p^{2}$
$x^{2}=4 p y$
Move the vertex from the origin $(0,0)$ to the point (h, k)
And the equation becomes
$(x-h)^{2}=4 p(y-k)$.

Fold point B (inside the circle) to point A on the circle.

Class Notes - 4.24 .08

Ellipse - a figure in a plane in which the sum of the distances of each point to 2 points called foci (plural of focus) is constant

$$
\left|\overline{P F}_{1}\right|+\left|\overline{P F}_{2}\right|=C
$$

$\leftarrow C$ is always the same, all the way around the ellipse

$=$ minor axis
$=$ major axis

$$
\left|P F_{1}\right|+\left|P F_{2}\right|=10
$$

$\begin{aligned} & \text { distance } \\ & \text { formula } \\ & (x-3)^{2}+(y-0)^{2}\end{aligned}+\sqrt{(x+3)^{2}+(y-0)^{2}}=10$

$$
\begin{aligned}
& \left(\sqrt{(x-3)^{2}+y^{2}}\right)^{2}=\left(10-\sqrt{(x+3)^{2}+y^{2}}\right)^{2} \\
& (x-3)^{2}+y^{2}=100-20 \sqrt{(x+3)^{2}+y^{2}}+(x+3)^{2}+y^{2} \\
& \begin{array}{c}
x^{x^{2}-6 x}+\phi \underline{-6 x}+y^{2}=100-20 \sqrt{(x+3)^{2}+y^{2}}+x^{2}+66+\not \alpha+y^{2} \\
-6 x
\end{array} \\
& \frac{-12 x=100-20 \sqrt{(x+3)^{2}+y^{2}}}{4} \\
& -3 x=25-5 \sqrt{(x+3)^{2}+y^{2}} \\
& -25 \quad-25 \\
& (-3 x-25)^{2}=\left(-5 \sqrt{(x+3)^{2}+y^{2}}\right)^{2} \\
& 9 x^{2}+150 x+625=25\left((x+3)^{2}+y^{2}\right) \\
& 9 x^{2}+150 x+625=25\left(x^{2}+6 x+9+y^{2}\right) \\
& \begin{aligned}
& 9 x^{2}+150 x+625=25 x^{2}+150 x \\
&-9 x^{2}-228 \\
&-225-9 x^{2} \\
&-25 y^{2}
\end{aligned} \\
& \frac{400}{400}=\frac{16 x^{2}+25 y^{2}}{400} \\
& 1=\frac{x^{2}}{25}+\frac{y^{2}}{16} \\
& \text { Equation of an } \\
& \text { ELLIPSE }
\end{aligned}
$$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

* if " a " is larger than "b":

* if " b " is larger than " a ":

Fold a point B outside the circle to a point A on the circle.

Working with the standard equation of a hyperbola to understand asymptotes
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Solving for y :
$\frac{x^{2}}{a^{2}}-1=\frac{y^{2}}{b^{2}}$
$\frac{x^{2}-a^{2}}{a^{2}}=\frac{y^{2}}{b^{2}}$
$\frac{b^{2}}{a^{2}}\left(x^{2}-a^{2}\right)=y^{2}$
$\pm \frac{b}{a} \sqrt{x^{2}-a^{2}}=y$
Since a is a constant, as \times grows large, $\pm \frac{b}{a} \sqrt{x^{2}-a^{2}} \rightarrow \pm \frac{b}{a} \sqrt{x^{2}} \rightarrow \pm \frac{b}{a} x$
So y approaches, but never equals $\pm \frac{b}{a} x$.

