MOVING BEYOND CROSS MULTIPLY AND DIVIDE

DEVELOPING PROPORTIONAL THINKING

Liz Peyser and Sarah Stevens Math Curriculum Wichita Public Schools epeyser@usd259.net sstevens1@usd259.net

OBJECTIVE

- Illustrate key points in the Ratio and Proportional Relationships Progression to develop proportional thinking related to:
- Tables
- Tape diagrams
- Double number lines
- Linear models
- Equations
o Timed activities produce math anxiety...

RESOURCES

○ commoncoretools.me

- Tools - "Progressions"
- Forum
- Illustrativemathematics.org
o map.mathshell.org
- Math Assessment Project - Shell Centre

CARD SORT CONVERSATIONS

- With your partner answer these questions, be prepared to share out:
- Which card represents a part-to-whole relationship?
o Which card represents a part-to-part relationship?

TYPES OF RATIO REPRESENTATIONS

o 4 boys to 5 girls (part-to-part)

- 5 girls to all 27 students (part-to-whole)

4 boys : 5 girls
4 to 5
$\frac{4}{5}$
A ratio is often represented in "fraction' "I although it may not be a part/whole relation

$$
\text { Is it } \frac{4}{5} \text { or } \frac{5}{4} ?
$$

The quotient represents the "value" of the ratio. (Progressions, pg 3)
Number of boys $=\frac{4}{5}$ the number of girls
Number of girls $=\frac{5}{4}$ the number of boys

FOR ALL STRATEGIES...

- Resist the temptation to use the "cross multiply and divide" trick!
- We will address cross-multiply/divide at the end

TAPE DIAGRAMS

- The ratio of the number of boys to the number of girls at school is 4:5
o A. What fraction of the students are boys?
o B. If there are 120 boys, how many students are there altogether?

YOUR TURN! TAPE DIAGRAM PRACTICE PROBLEMS

- With a partner, work the problems, using tape (strip) diagrams.
o Look at question 2 - How many steps would it take to solve this without a tape diagram?

SODA MIX

Batch	Cups of lemon- lime	Cups of cola
1	2	
2		6
3		9
4	8	15
5	10	

o Keep the same ratio and find the missing quantities for each batch of soda

o Identify all the relationships

| Batch | Cups of lemon-
 lime | Cups of cola | |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 2 | 3 |

YOUR TURN!

- With a partner, complete Ratio Table \#1 on your practice sheet
- Resist the temptation to use the "cross multiply and divide" trick!

RATIOS TABLE PRACTICE \#1

Widgets	3	1	5	10
Cost	$\$ 2.40$	$\$ 0.80$	$\$ 4.00$	$\$ 8.00$

If 3 widgets cost $\$ 2.40$, how much would 5 widgets cost? 10 widgets?

What is the unit rate?
What is the scale factor?

- The unit rate is identified as the "constant of proportionality"
- Progressions document, pages 7 and 9

DOUBLE NUMBER LINES

o Quantities of different measure can be partitioned into the same equal parts on a visual model.

- Useful for finding unit rates
o We can also use them to show percentages

SUPER-FAST RUNNER?

How many minutes per mile? 3 minutes

How many minutes would it take to travel $1 / 2$ mile?
$11 / 2$ minutes

10 equal sections, each worth 10\% Each of the 10 parts is worth $\$ 6$.

10\% beyond 100% would be $\$ 6$ extra, for a total of $\$ 66$ What is 90% of $\$ 60$? It is $\$ 60$ less $\$ 6$, or $\$ 54$

YOUR TURN! PRACTICE PROBLEMS

- Use double number lines to model and solve the practice problems, with your partner.

PUTTING IT ALL TOGETHER

o Complete the "Soda Mix - Revisited" using the table of values
o Equation:

EQUATION

o (2:3) A:B

$$
\begin{aligned}
& \longrightarrow y=\frac{b}{a}(x) \\
& \text { Cola }=\frac{3}{2}(L L)
\end{aligned}
$$

OR:

$$
y=1.5(x) \quad \text { "unit rate" }
$$

When the input is 1 cup of lemon lime, the amount of change in cola is 1.5 cups.

UNIT RATES

o A unit rate is established when the input is 1.
o In a proportional relationship:

- Unit rate is the "constant of proportionality" from Progressions page 9
- The unit rate is the slope of the graph of a proportional relationship (8.EE.5)
- y = kx

A VS. B

Linear?
Proportional?
How do you know?

CAUTION!

o All proportional relationships are linear but not all linear relationships are proportional

CAUTION!

o Cross-multiply and divide does not develop proportional thinking - it should only be introduced after students develop proportional reasoning through other methods [tables, tape diagrams and number lines].

- (Van de Walle, Teaching Student-Centered Mathematics Grades 5-8, page 157)

OThark you!

