# MOVING BEYOND CROSS MULTIPLY AND DIVIDE

# DEVELOPING PROPORTIONAL THINKING

Liz Peyser and Sarah Stevens

Math Curriculum

Wichita Public Schools

epeyser@usd259.net

sstevens1@usd259.net

#### **OBJECTIVE**

- Illustrate key points in the Ratio and Proportional Relationships Progression to develop proportional thinking related to:
  - Tables
  - Tape diagrams
  - Double number lines
  - Linear models
  - Equations
- Timed activities produce math anxiety...

#### RESOURCES

- commoncoretools.me
  - Tools "Progressions"
  - Forum
- Illustrativemathematics.org
- map.mathshell.org
  - Math Assessment Project Shell Centre

#### CARD SORT CONVERSATIONS

- With your partner answer these questions, be prepared to share out:
- Which card represents a part-to-whole relationship?
- Which card represents a part-to-part relationship?

#### TYPES OF RATIO REPRESENTATIONS

- 4 boys to 5 girls (part-to-part)



**4 5** 

Progressions

A ratio is often represented in "fraction' in although it may not be a part/whole relation

The quotient represents the "value" of the ratio. (*Progressions*, pg 3)

Number of boys = 
$$\frac{4}{5}$$
 the number of girls

Number of girls = 
$$\frac{5}{4}$$
 the number of boys

#### FOR ALL STRATEGIES...

- Resist the temptation to use the "cross multiply and divide" trick!
- We will address cross-multiply/divide at the end

#### TAPE DIAGRAMS

- The ratio of the number of boys to the number of girls at school is 4:5
- A. What fraction of the students are boys?
- B. If there are 120 boys, how many students are there altogether?



# YOUR TURN! TAPE DIAGRAM PRACTICE PROBLEMS

 With a partner, work the problems, using tape (strip) diagrams. • Look at question 2 - How many steps would it take to solve this without a tape diagram?



#### **SODA MIX**

| Batch | Cups of<br>lemon-<br>lime | Cups of cola |  |
|-------|---------------------------|--------------|--|
| 1     | 2                         |              |  |
| 2     |                           | 6            |  |
| 3     |                           | 9            |  |
| 4     | 8                         |              |  |
| 5     | 10                        | 15           |  |

 Keep the same ratio and find the missing quantities for each batch of soda

Identify all the relationships

| Batch | Cups of lemon- Cups of cola |                           |
|-------|-----------------------------|---------------------------|
| 1     | 2 -X                        | 3<br>1.5                  |
| 2     | 2 groups of 2 cups          | 6<br>125groups, of 3 cups |
| 3     | 6 3 groups of 2 cups        | 9 3 groups of 3 cups      |
| 4     | 8                           | 12                        |
| 5     | 10                          | 15                        |

#### **YOUR TURN!**

- With a partner, complete Ratio Table #1 on your practice sheet
- Resist the temptation to use the "cross multiply and divide" trick!

#### **RATIOS TABLE PRACTICE #1**

| Widgets | 3      | 1      | 5      | 10     |
|---------|--------|--------|--------|--------|
| Cost    | \$2.40 | \$0.80 | \$4.00 | \$8.00 |

If 3 widgets cost \$2.40, how much would 5 widgets cost? 10 widgets?

What is the unit rate?

What is the scale factor?

• The unit rate is identified as the "constant of proportionality"

Progressions document, pages 7 and 9

#### DOUBLE NUMBER LINES

- Quantities of different measure can be partitioned into the same equal parts on a visual model.
- Useful for finding unit rates
- We can also use them to show percentages

## SUPER-FAST RUNNER?





How many minutes per mile? 3 minutes

How many minutes would it take to travel ½ mile?

1½ minutes



10 equal sections, each worth 10% Each of the 10 parts is worth \$6.

10% beyond 100% would be \$6 extra, for a total of \$66

What is 90% of \$60? It is \$60 less \$6, or \$54

# YOUR TURN! PRACTICE PROBLEMS

 Use double number lines to model and solve the practice problems, with your partner.



## PUTTING IT ALL TOGETHER

- Complete the "Soda Mix Revisited" using the table of values
- Equation:

## **EQUATION**

Progressions
Appendix, Page

OR:

$$y = 1.5 (x)$$
 "unit rate"

When the input is 1 cup of lemon lime, the amount of change in cola is 1.5 cups.

#### UNIT RATES

- A unit rate is established when the input is 1.
- In a proportional relationship:
  - Unit rate is the "constant of proportionality" from *Progressions* page 9
  - The unit rate is the slope of the graph of a proportional relationship (8.EE.5)
  - y = kx

## A VS. B

Linear?
Proportional?
How do you know?



#### **CAUTION!**

 All proportional relationships are linear but not all linear relationships are proportional



#### **CAUTION!**

- Cross-multiply and divide does not develop proportional thinking - it should only be introduced after students develop proportional reasoning through other methods [tables, tape diagrams and number lines].
  - (Van de Walle, *Teaching Student-Centered Mathematics Grades 5-8*, page 157)



# othank you!

