National Conference of Teachers of Mathematics New Orleans 2014

Carolyn Williamson

cwilliamson@thecarmelschool.org

Why don't they remember?

Who is to blame?

The college professor said, "Such rawness in a student is a shame. Lack of preparation in high school is to blame."

Said the high school teacher, "Good heavens, that boy's a fool. The fault, of course, is with the middle school.

The middle school teacher said, "From stupidity may I be spared. They sent him so unprepared."

The primary teacher huffed, "Kindergarten blockheads all. They call that preparation? Why it's worse than none at all."

The kindergarten teacher said, "Such lack of training never did I see. What kind of woman must that mother be?"

The mother said, "Poor helpless child. He's not to blame. His father's people were all the same."

Said the father at the end of the line, "I doubt the rascal's even mine."

-anonymous, 101 "Answers" for new Teachers and their Mentors, page 81

Lexicons

- Lexicons are <u>knowledge stores</u>
- Lexicons can vary in size

- Lexicons can vary in <u>amount of info stored</u> but if it is stored, it can be retrieved
- Lexicons can vary in <u>terms of accessibility</u> as students figure out what to do with information in working memory
- Lexicons can vary in <u>terms of emotional tone</u> and intensity which can impact accessibility

The NOW

- Initial registration of information requires access of *previously* stored information
- Students must travel to their lexicons

It can be scary in there....

Now and Then

- Initial registration in the "now" requires access to knowledge stores (lexicons)
- If students do not have an organizational structure, they can't find it when they need it
- Inaccessibility of previous knowledge is a barrier to learning

Executive Functions Who is driving the bus?

- Frontal lobe activity is still maturing in high school students
- The frontal lobes control the cues that provides access to lexicons
- Limbic Area (emotional system) develops faster and matures earlier than frontal lobes
- Emotion drives attention
- Attention drives learning

What Can Teachers Do?

- Help students to emotionally prepare for learning by creating relaxed, positive emotional states.
- Teach students about information processing by modeling new strategies
- Help students be in the "now" and cue them about what lexicons are likely to be needed for processing
- Cue students about upcoming need to extend information beyond the "now"

The Digital Generation

- The wiring is new
- Information is processed in a parallel or simultaneous manner
- Multitasking is a way of life

 Learning in a sequential, linear manner is a challenge for the digital generation

Cultural Brains the digital generation

- Digital bombardment has affected adolescent brains
- Brains have become "neuroplastic"
- Reading patterns are different
- Prefers to access info quickly from multi-media sources

Digital Natives

Learn <u>"just in time" vs. "just in case"</u>

- New skills are acquired as needed, on demand
- Students are growing up in a faster world and are <u>fast interactive learners</u>;
- Producers vs. passive recipients

Memory is **EVERYWHERE**

- Memory is not stored in a single location in the brain
- As experience enters the brain it is deconstructed and distributed all over the cortex
 - Emotional and Visual content
 - Procedural memory
 - Semantic memory
 - Episodic memory

3 Types of Memory

- Short Term Memory
 - Retention for a few seconds, minutes or more depending
- Working Memory
 - "Desktop" for retrieval of memory for immediate use. When working memory is no longer needed it is partially or totally forgotten.
- Long Term Memory
 - The brain produces new proteins when items from working memory are moved to long term memory

What appear to be memory problems are really difficulties with processing information

What We Remember...

- We remember **BEST** that which comes **FIRST**
- We remember SECOND BEST that which comes LAST
- We remember LEAST that which comes <u>JUST</u>
 <u>PAST THE MIDDLE</u>

Layering the Curriculum

Foster higher level thinking skills by connecting new learning to prior knowledge

- 1. Primetime 1
 - First twenty minutes
 - Avoid management tasks

- Do you really want to start with homework?
- 2. Primetime 2
 - Closure

 Last chance to attach meaning and make sense of new learning

From How the Brain Learns, David Sousa, (Corwin Press, 2001)

Approximate Ratio of Prime-Times to Down-Time During Learning Episode

- Between Primetime 1 and Primetime 2 should be a time where students are given the opportunity to move information and solidify memory.
- If no meaning is attached then 99% of the learning is lost in 24 hours
- Retention requires the learners to "hook learning" to something in their brains

Making Memories

- Repeat and Rehearse can be tricky for the digital generation who are immersed in multimedia and acclimated to multitasking
- With repeated exposure, novel experiences become routine
- The key is to find meaningful and different applications of math to maintain interest
- Determine how much practice is needed and then do no more

Similarities and Differences

- Brains <u>store</u> using <u>similarities</u>
- Brains <u>retrieve</u> using <u>differences</u>

 If concepts have more similarities than differences, the similarities will overwhelm the differences resulting in the same retrieval cues being attached to both concepts.

Lesson Design: Similarities

- List similarities and differences between subjects
- If the number of similarities is greater than differences, confusion is likely
- Teach a related concept to give the first concept time to be consolidated (12-14 hours)
- Teach the second similar concept later

Lesson Design: Differences

 Start by teaching differences first

 Focusing on and practicing the differences gives learners the warnings and cues they need to identify them correctly in the future.

Making it Stick

Relationships

Rigor

- Does not mean harder
- Effective use of questions
- Incorporation of symbols previously encountered
- Rule of Four: numerical, algebraic, tabular, graphical
- Build in ongoing scaffolding to support students' connections

 Makes connections within context of the problem

Relevance

- Solving problems from prior course with new learning
- Relevance makes rigor possible, but relationships are key in determining relevance

You are the scientist!

Your experience, with research and practice, is evidence of success in your classroom!

Acknowledgements

- Dr. Robert Greenleaf, Brain Based Teaching, 2005
- Dr. George McCloskey, *Memory, Learning and Production*, 2007
- Dr. George McCloskey, Executive Functions, 2009
- David Sousa, How the Brain Learns Mathematics, 2008
- David Sousa, How the Brain Learns, 2001
- Attributes of Digital Learners, The 21st Centruy Fluency Project, <u>www.21stcenturyfluency.com</u>
- Patricia Wolfe, *Brain Matters*
- Education Week, 1/11/06, <u>www.schoolchange.org</u>
- "Layered Curriculum" is a registered trademark developed by and registered to Kathie F. Nunley. Additional information is available at http//help4teachers.com."
- David Eagleman, "Why Brain Science Matters to Educators", November 2012, VAIS