ENGAGING THE STRUGGLING LEARNER: Technology Can Help!

Thank you for coming!!!!!

Please email me with questions, comments or more dialog on how we can help Ordinary Students Do Extraordinary Things!
carolyn.briles@lcps.org

Understanding Quadratic Functions in Vertex Form
 (aka Mastering the Art of Angry Birds)
 $$
y=a(x-h)^{2}+k
$$

Use your calculator to graph and answer the following. Note: For 2-5, you will be graphing 2 functions, the "original" and a new one. Sketch your "original function" in colored pencil.

1. Exploring " a "

1. Graph $y=x^{2}$ on your calculator in y_{1}.
a) What direction does the graph open? \qquad
b) What is the vertex of the graph? \qquad
2. Graph $y=2 x^{2}$ on your calculator in y_{2}.
a) What direction does the graph open? \qquad
b) What is the vertex of the new graph? \qquad

c) How is your new graph different than our original function?
3. Graph $y=\frac{1}{2} x^{2}$ on your calculator in y_{2}.
a) What direction does the graph open? \qquad
b) What is the vertex of the new graph? \qquad

c) How is your new graph different than our original function?
4. Graph $y=-x^{2}$ on your calculator in y_{2}.
a) What direction does the graph open? \qquad
b) What is the vertex of the new graph? \qquad
c) How is your new graph different than our original function?
5. Graph $y=-2 x^{2}$ on your calculator in \mathbf{y}_{2}.
a) What direction does the graph open? \qquad
b) What is the vertex of the new graph? \qquad
c) How is your new graph different than our original function?

ANALYSIS: How does " a " affect our parabola?

2. Exploring "h" $\quad y=a(x-h)^{2}+k$

1. Graph $y=x^{2}$ on your calculator in \mathbf{y}_{1}.
a) Sketch a graph of the function.
b) What is the vertex of the graph? \qquad
2. Graph $y=(x-1)^{2}$ on your calculator in y_{2}.
a) Sketch a graph of both functions.
b) How does the new graph move? Left or Right? \qquad
c) What was the SIGN of the 1?

d) What is the vertex of the new graph?
3. Graph $y=(x-5)^{2}$ on your calculator in \mathbf{Y}_{2}.
a) Sketch a graph of both functions.
b) How does the new graph move? Left or Right? \qquad
c) What was the SIGN of the 5?
d) What is the vertex of the new graph? \qquad
4. Graph $y=(x+3)^{2}$ on your calculator in y_{2}.
a) Sketch a graph of both functions.
b) How does the new graph move? Left or Right? \qquad
c) What was the SIGN of the 3?
d) What is the vertex of the new graph? \qquad
5. Graph $y=(x+7)^{2}$ on your calculator in y_{2}.
a) Sketch a graph of both functions.
b) How does the new graph move? Left or Right?
c) What was the SIGN of the 7?

d) What is the vertex of the new graph? \qquad

ANALYSIS: How does " h " affect our parabola?
When we have $(x-h)^{2}$, what direction does the graph move?
When we have $(x+h)^{2}$, what direction does the graph move?

WHY is this true?

1. Exploring " k " $\quad y=a(x-h)^{2}+k$
2. Graph $y=x^{2}$ on your calculator in y_{1}.
a) Sketch a graph of the function.
b) What is the vertex of the graph? \qquad
3. Graph $y=x^{2}-1$ on your calculator in y_{2}.
a) Sketch a graph of both functions.
b) How does the new graph move? Up or down? \qquad
c) What is " h " for this quadratic? What is " k "?
d) What is the vertex of the new graph?
4. Graph $y=x^{2}-5$ on your calculator in y_{2}.
a) Sketch a graph of both functions.
b) How does the new graph move? Up or down?
c) What is " h " for this quadratic? What is " k "?
d) What is the vertex of the new graph?
5. Graph $y=x^{2}+3$ on your calculator in y_{2}.
a) Sketch a graph of both functions.
b) How does the new graph move? Up or down?
c) What is " h " for this quadratic? What is " k "?
d) What is the vertex of the new graph?

6. Graph $y=x^{2}+7$ on your calculator in \mathbf{y}_{2}.
a) Sketch a graph of both functions.
b) How does the new graph move? Up or down? \qquad
c) What is " h " for this quadratic? What is " k "?
d) What is the vertex of the new graph? \qquad
ANALYSIS: How does "k" affect our parabola?

Putting It ALL Together -

1. Graph $y=x^{2}$ on your calculator in y_{1}. .
2. Graph $y=(x-3)^{2}-4$ on you calculator in \mathbf{Y}_{2}.
a) What direction does the graph open? \qquad
b) Is it "stretched tall," "shrunken and squatty," or normal? \qquad
c) How does the graph move? (left/right, up/down) \qquad
d) What is the vertex of the graph? \qquad
3. Graph $y=-\frac{1}{2}(x-2)^{2}-3$ on you calculator in y_{2}.
a) What direction does the graph open? \qquad
b) Is it "stretched tall," "shrunken and squatty," or normal? \qquad
c) How does the graph move? (left/right, up/down) \qquad
d) What is the vertex of the graph? \qquad
4. Graph $y=-2(x+5)^{2}+7$ on you calculator in \mathbf{Y}_{2}.
a) What direction does the graph open? \qquad
b) Is it "stretched tall," "shrunken and squatty," or normal? \qquad
c) How does the graph move? (left/right, up/down) \qquad
d) What is the vertex of the graph? \qquad
5. Graph $y=(x+6)^{2}-4$ on you calculator in y_{2}.
a) What direction does the graph open? \qquad
b) Is it "stretched tall," "shrunken and squatty," or normal? \qquad
c) How does the graph move? (left/right, up/down) \qquad
d) What is the vertex of the graph? \qquad
Now generalize...Fill in the table using your new knowledge.

Function	Direction/Opening (up or down)	Vertex	Vertical Stretch or Shrink
1. $y=\frac{1}{4}(x+4)^{2}-9$			
2. $y=-2(x+1)^{2}+6$			
3. $y=4(x-3)^{2}+5$			
4. $y=-\frac{1}{2}(x-7)^{2}+3$			
5. $y=2(x+4)^{2}-1$			

A	3 $y=x^{2}$
	$y=(x+2)^{2}$
B	1 $y=x^{2}+2$

 H	$y=(x-2)^{2}$
C	$y=x^{2}-2$
E	$y=2 x^{2}$

	$y=-\frac{1}{2} x^{2}$
	$y=(x-2)^{2}+2$

Name: \qquad

Quadratics in Vertex Form

Formative Assessment
Directions: Begin each sort with the set of ALL cards. List the letters and numbers of quadratics that match each description. As an alternative, you may take a picture of the set of equations and graphs. Some cards will be listed in more than one category.

1) Find all graphs and equations with any horizontal shift.
2) Find all graphs and equations with any vertical shift.
3) Find all graphs and equations with any vertical shrink.
4) Find all graphs and equations with any vertical stretch.

Show the teacher when you have completed these sorts!!!
Now match each graph to its corresponding equation.
A \qquad E
F
G
H

$$
\begin{aligned}
& \text { The Legacy of Pythagoras } \\
& (\operatorname{leg})^{2}+(\operatorname{leg})^{2}=(\text { hypotenuse })^{2}
\end{aligned}
$$

Given a 5×5 Geoboard, comprised of 25 pegs, as shown, your task is to determine how many different sized squares can be created by connecting 4 pegs. Note that some squares, as shown below, will be "slanted" squares.

Sketch your drawings. Find the length of each side and the area.

Probability and Fair Games
 Would you put your money on this one?

Spinner A

2

6

Player1	Player2

Spin both spinners and record the results. Create a fraction with the numerator from spinner A and denominator from Spinner B. Record your result as a rational number.

numerator	denominator	rational number

Spinner B

