ACTIVITIES and FORMATIVE ASSESSMENTS USED DURING THE SESSION

ENGAGING THE STRUGGLING LEARNER: Technology Can Help!

Thank you for coming!!!!!

Please email me with questions, comments or more dialog on how we can help Ordinary Students Do Extraordinary Things!

carolyn.briles@lcps.org

Understanding Quadratic Functions in Vertex Form

(aka Mastering the Art of Angry Birds)

$$y = a(x - h)^2 + k$$

Use your calculator to graph and answer the following. Note: For 2-5, you will be graphing 2 functions, the "original" and a new one. Sketch your "original function" in colored pencil.

<u>1.Exploring "a"</u>

- 4. Graph $y = -x^2$ on your calculator in Y_2 .
 - a) What direction does the graph open? _____
 - b) What is the vertex of the new graph? _____
 - c) How is your new graph different than our original function?
- 5. Graph $y = -2x^2$ on your calculator in Y_2 .
 - a) What direction does the graph open? _____
 - b) What is the vertex of the new graph? _____
 - c) How is your new graph different than our original function?

ANALYSIS: How does "a" affect our parabola?

2. Exploring "h" $y = a(x - h)^2 + k$

- 1. Graph y = x² on your calculator in Y₁.
 a) Sketch a graph of the function.
 b) What is the vertex of the graph? _____
 2. Graph y = (x 1)² on your calculator in Y₂.
 a) Sketch a graph of both functions.
 b) How does the new graph move? Left or Right? ______
 c) What was the SIGN of the 1?
 - d) What is the vertex of the new graph? _____

- 3. Graph $y = (x 5)^2$ on your calculator in Y_2 .
 - a) Sketch a graph of both functions.
 - b) How does the new graph move? Left or Right? _____
 - c) What was the SIGN of the 5?
 - d) What is the vertex of the new graph? _____
- 4. Graph $y = (x + 3)^2$ on your calculator in Y_2 .
 - a) Sketch a graph of both functions.
 - b) How does the new graph move? Left or Right? _____
 - c) What was the SIGN of the 3?
 - d) What is the vertex of the new graph? _____
- 5. Graph $y = (x + 7)^2$ on your calculator in Y_2 .
 - a) Sketch a graph of both functions.
 - b) How does the new graph move? Left or Right? _____
 - c) What was the SIGN of the 7?
 - d) What is the vertex of the new graph? _____

ANALYSIS: How does "h" affect our parabola?

- When we have $(x h)^2$, what direction does the graph move?
- When we have $(x + h)^2$, what direction does the graph move?

WHY is this true?

<u>1. Exploring "k"</u> $y = a(x - h)^2 + k$

- 1. Graph $y = x^2$ on your calculator in Y_1 .
 - a) Sketch a graph of the function.
 - b) What is the vertex of the graph? _____
- 2. Graph $y = x^2 1$ on your calculator in Y_2 .
 - a) Sketch a graph of both functions.
 - b) How does the new graph move? Up or down? ____
 - c) What is "h" for this quadratic? What is "k"?
 - d) What is the vertex of the new graph? _____
- 3. Graph $y = x^2 5$ on your calculator in Y_2 .
 - a) Sketch a graph of both functions.
 - b) How does the new graph move? Up or down? _____
 - c) What is "h" for this quadratic? What is "k"?
 - d) What is the vertex of the new graph? _____
- 4. Graph y = x² + 3 on your calculator in Y₂.
 a) Sketch a graph of both functions.
 b) How does the new graph move? Up or down? ______
 c) What is "h" for this quadratic? What is "k"?
 - d) What is the vertex of the new graph? _____

- 5. Graph $y = x^2 + 7$ on your calculator in Y_2 .
 - a) Sketch a graph of both functions.
 - b) How does the new graph move? Up or down? _____
 - c) What is "h" for this quadratic? What is "k"?
 - d) What is the vertex of the new graph? _____

ANALYSIS: How does "k" affect our parabola?

Putting It ALL Together -

- 1. Graph $\mathbf{y} = \mathbf{x}^2$ on your calculator in \mathbf{y}_1 .
- 2. Graph $y = (x 3)^2 4$ on you calculator in Y_2 .
 - a) What direction does the graph open? _____
 - b) Is it "stretched tall," "shrunken and squatty," or normal? _____
 - c) How does the graph move? (left/right, up/down) _____
 - d) What is the vertex of the graph? _____
- 3. Graph $y = -\frac{1}{2}(x 2)^2 3$ on you calculator in Y_2 .
 - a) What direction does the graph open? _____
 - b) Is it "stretched tall," "shrunken and squatty," or normal?
 - c) How does the graph move? (left/right, up/down) _____
 - d) What is the vertex of the graph? _____

- 4. Graph $y = -2(x + 5)^2 + 7$ on you calculator in Y_2 .
 - a) What direction does the graph open? _____
 - b) Is it "stretched tall," "shrunken and squatty," or normal? _____
 - c) How does the graph move? (left/right, up/down) _____
 - d) What is the vertex of the graph? _____
- 5. Graph $y = (x + 6)^2 4$ on you calculator in Y_2 .
 - a) What direction does the graph open? _____
 - b) Is it "stretched tall," "shrunken and squatty," or normal? _____
 - c) How does the graph move? (left/right, up/down) ______
 - d) What is the vertex of the graph? _____

Now generalize...Fill in the table using your new knowledge.

Function	Direction/Opening (up or down)	Vertex	Vertical Stretch or Shrink
1. $y = \frac{1}{4}(x + 4)^2 - 9$			
2. $y = -2(x + 1)^2 + 6$			
3. $y = 4(x - 3)^2 + 5$			
4. $\gamma = -\frac{1}{2}(x-7)^2 + 3$			
5. $\gamma = 2(x + 4)^2 - 1$			

Name:_____

Quadratics in Vertex Form Formative Assessment

Directions: Begin each sort with the set of **ALL** cards. List the letters and numbers of quadratics that match each description. As an alternative, you may take a picture of the set of equations and graphs. Some cards will be listed in more than one category.

- 1) Find all graphs and equations with any horizontal shift.
- 2) Find all graphs and equations with any vertical shift.
- 3) Find all graphs and equations with any vertical shrink.
- 4) Find all graphs and equations with any vertical stretch.

Show the teacher when you have completed these sorts!!!

Now match each graph to its corresponding equation.

A	 E	
В	 F	
С	 G	
D	 н	

The Legacy of Pythagoras (leg)² + (leg)² = (hypotenuse)²

Given a 5X5 Geoboard, comprised of 25 pegs, as shown, your task is to determine how many different sized squares can be created by connecting **4 pegs**. Note that some squares, as shown below, will be "slanted" squares.

Sketch your drawings. Find the length of each side and the area.

0 0 ο. ø ο 0 o O ö o o Ö. Ο. o 0 ο. o

o ο. 0 ο о 0 ο. Ö. Ö. ο 0 Ο. o о 0 ο. 0 ο 0

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
o	0	0	0	0
0	0	0	0	0
0	0	0	0	0

Probability and Fair Games Would you put your money on this one?

Player1	Player2

Spin both spinners and record the results. Create a fraction with the numerator from spinner A and denominator from Spinner B. Record your result as a rational number.

numerator	denominator	rational number

