

2013-2014 Learn $\leftarrow \rightarrow$ Reflect Strand

- What is number sense and how can you promote the development of number sense in your students?
- How are fluency and understanding related in the context of number and operations?
- How can instructional decisions facilitate the development of strategies that are meaningful and transferable for operations on all numbers?
- How are equity and diversity promoted by developing conceptual understandings of number?
- How can the Standards for Mathematical Practice support the development of number sense and computational fluency?
- How are you thinking differently about your learning and teaching of number and operations as a result of participating in the Learn $\leftarrow \rightarrow$ Reflect sessions?

Stories, Models, Strategies and Algorithms:
Putting Fractions in Real Contexts

GOALS:

- To use story problems and visual fraction models to develop strategies for making sense of fraction division (both partitive and measurement) based on the meanings of numerators and denominators.
- To connect strategies for solving fraction division problems that use multiplication, addition, subtraction, and counting equal parts.
- To use visual fraction models and real-world problem situations to explain and demonstrate why and how "invert and multiply" works for fraction division.
SUV SAGINAWVALLEY \quad STATE UNIVERSITY. \quad Nстм $2014 \quad$ Hillman

Common Core State Standards - Mathematics: \qquad
5.NF.B.7.

- Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.
5.NF.B.7.c.
- Solve real world problems involving division of unit fractions by nonzero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem.
6.NS.A.1.
- Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem.
SV SAGINAWVALLEY NCTM 2014 Hillman

STORIES and STRATEGIES

Two basic types of equal groups division stories:

- Knowing how many groups and so you need to find
- how much goes into each group or
- how much goes into one whole group

- Knowing the size of each group so you need to find
- how many groups can be made or
- how much of a group

SV SAGINAWVALLEY
STORY: Partitive Division
"Knowing how many groups" strategy:
• Split into equal groups and
• FIND how much goes into each group
(find a single unit)

There is $\frac{1}{3}$ cup of lemonade.
I use it to fill 2 glasses. Both glasses have the same amount of lemonade. How much lemonade is in each glass? $\frac{1}{3} \div 2$
SVI SAGINAWVALLEY STATE UNIVERSITY.

STORY: Partitive Division
"Knowing part of one group" strategy:

- FIND how much goes into one whole group
(complete one whole group)

There are two cups of juice.
They fill the pitcher $\frac{1}{3}$ full.
How many cups of juice fill the pitcher?

$$
2 \div \frac{1}{3}
$$

SAginaw Valley
tate university
sy Saginaw Valley
NCTM 2014
There are 2 cups of lemonade in the pitcher. Each glass holds $\frac{1}{3}$ cup of lemonade. How many glasses of lemonade can be filled?

$$
2 \div \frac{1}{3}
$$

- Split given amount into groups of given size
- FIND how many groups can be made
(how many times it fits into a given amount)
"Knowing how much to put in each group" strategy:

FATE UNIVERSITY

STORIES, MODELS and STRATEGIES SU

A 6 -ounce package of peanuts says that one serving is $\frac{3}{4}$ of an ounce. How many servings are in the package?

STORY: Measurement Division

"Knowing the part of a part" strategy:

- Show the part of a part of the whole
- FIND how much of a whole

There is $\frac{1}{3}$ cup of lemonade in the pitcher. Each pitcher holds 2 cups of lemonade.
How full is the pitcher?
(The lemonade fills what fraction of the pitcher?)

$$
\frac{1}{3} \div 2
$$

SAGINAWVALley

STORIES, MODELS and STRATEGIES SU
A 6 -ounce package of peanuts says that one serving is $\frac{3}{4}$ of an ounce. How many servings are in the package?

STORIES, MODELS and STRATEGIES
Three-fourths of the lasagna is left in the refrigerator. There are 6 of us who share it for supper. How much of the lasagna does each of us get to eat?

STORIES, MODELS and STRATEGIES

I have $\frac{3}{4}$ of an hour to do 3 chores.
How much time can I spend on each chore?

I have $\frac{2}{3}$ of an hour to do 4 chores.
How much time can I spend on each chore?

STORIES, MODELS and STRATEGIES SU		
I walked $\frac{3}{4}$ of a mile in $\frac{1}{4}$ of an hour. How far could I walk in 1 hour?		
I rode my bike for $\frac{2}{3}$ of an hour and went 5 miles. How far could I ride in 1 hour?		
SY SaGINAW Valley	nctrw 214	

STORIES, MODELS, and ALGORITHMS		
- Common denominator algorithm - Divide Across method - Invert and Multiply algorithm (a.k.a. Freeze Change Flip)		
SV SAGINAWVALLEY	nertw 214	

STORIES, MODELS, STRATEGIES and ALGORITHMS: SV Putting Fractions in Real Contexts

Learn $\leftarrow \rightarrow$ Reflect:

- How are fluency and understanding related in the context of number and operations?
- How can instructional decisions facilitate the development of strategies that are meaningful and transferable for operations on all numbers?
- How are equity and diversity promoted by developing conceptual understandings of number?
- How can the Standards for Mathematical Practice support the development of number sense and computational fluency?

SV SAGINAWVALLEY	NCTM 2014	Hillman
SUTATE UNIVERSITY.		

STORIES, MODELS, STRATEGIES and ALGORITHMS: Putting Fractions in Real Contexts		
THANK YOU!		
Susan L. Hillman shillman@svsu.edu		
Sy Saginaw Valley	мстм 2014	H1mman

