Benchmark Numbers: A Rational Approach

Cara Dunn \& Diana Quincannon

Try this problem...

Benchmarks are:

Familiar
$0,1 / 2,1,3 / 4$, etc.
Point of reference
Can be fractions, decimals or percents

Why Does It Matter?

Students can learn algorithms but conceptual understanding is lacking (Moss \& Case, 1999) $1 / 2+2 / 4=3 / 6$
Developing an understanding of the magnitude of fractions with the use of benchmarks helps provide a "conceptual foundation" (Reys, Kim \& Bay, 1999)
Successful students use benchmark strategies when comparing fractions (Clarke \& Roche, 2009)
42% vs 89% success rate

Benchmark Reasoning Helps!

Estimate: $8 / 5+3 / 7$
Estimate: $12 / 13+7 / 8$

Your turn...

1.) Which is larger: $5 / 8$ or 3/7?
2.) About how much is 7/8-10/21?
3.) Which total is more than 1?
a.) $2 / 5+3 / 7$
b.) $1 / 2+4 / 9$
c.) $2 / 8+2 / 11$
d.) $4 / 7+1 / 2$

Set 2:

1.) Which is larger?
a.) .27 or $8 / 13$
b.) $3 / 8$ or 63%
2.) Several pizzas were ordered. Miss Hock ate 8/17 of a pizza. Miss Dunn ate 49% of a pizza and Mr. Kim ate $3 / 5$ of a pizza. Who ate the most?

Natural Benchmark Use Change -17.8 into a percent.

Place these numbers on the number line:

$$
0.28,-11 / 3,0.5,2.3,11 / 4,38 \%,-115 \%, 7 / 5,0.56
$$

Classroom Connections

Model/point out student use when it happens or when a benchmark might be helpful

Choose problems that easily access half and whole benchmarks, then build

Offer problems with fractions, decimals, and percents

The End

100\% Finished!!!
Questions?

