RTI in Math: Evidence-Based Interventions for Struggling Students

NCTM 2014
New Orleans

Dr. Linda Forbringer

Associate Professor
Dept. of Special Education \& Communication
Disorders

Southern Illinois University Edwardsville
Iforbri@siue.edu

What evidence-based interventions

support learners who struggle with

 mathematics?Assisting Students
Struggling with Mathematics: RtI for Elementary and Middle Schools (2009)

What Works Clearinghouse Practice Guide:
http://ies.ed.gov/ncee/wwc/publications/practice guides/

Click to LOOK INSIDE!

WWC Recommendations

1. Universal Screening \rightarrow

Tiered, Targeted Interventions
2. Monitor Progress \& Adjust Interventions
3. Include Motivational Support
4. Focus on Foundational Skills
(whole numbers \& rational numbers)

WWC Recommendations

5. Develop Fluency with Basic Facts
6. Use Visual Representations
7. Use Underlying Structures to Teach Problem Solving
8. Use Explicit Instruction During Interventions

5. What Works Clearinghouse Recommends

Develop Fluency with Basic Facts

Interventions at all grade levels should devote about
10 minutes each session to building fluent retrieval of basic arithmetic facts.

To build fluency How many unfamiliar facts should students practice at one time?

Memorize the following numbers:

7438592

How many did you remember?

$$
7438592
$$

The number of items

 that the average adult can hold in working memory is about
7 ± 2

Miller, 1956

Capacity increases with age:

$$
\begin{array}{rc}
\text { Age } & \text { \# of Items } \\
\hline 15 & 7 \pm 2 \\
13 & 6 \pm 2 \\
11 & 5 \pm 2 \\
9 & 4 \pm 2 \\
7 & 3 \pm 2 \\
5 & 2 \pm 2
\end{array}
$$

Pascual-Leon, 1970

Research Findings

Students who struggle with mathematics
 typically have deficits in working memory.

What happens when the pace of instruction exceeds the learner's capacity?

Memorize this list of numbers:

$$
63152742194
$$

How well did you do?

$$
63152742194
$$

When the task exceeds the child's capacity,
 little learning occurs!

Limit the number of new facts students practice at one time!

WWC suggests
 2 new facts,
 plus review

Potential Roadblock

- Commercial materials often practice too many facts at a time.

Differentiating Practice: Peer Tutoring

Examples:

- Classwide Peer Tutoring (CWP)
- Peer Assisted Learning Strategies (PALS)
- Etc.

Process:

- Pre-assess. Create flashcards for facts that the student will learn first and a bank of facts for later practice.
- Partner Practice

Partners take turns practicing the facts on 5 of their cards.

- Reward Improvement

Differentiating Practice

6. WWC Recommendation:

Use Visual Representations

- Ten Frames
- Mathline
- Base Ten Blocks

- DigiBlocks

Concrete	Representational	Abstract
- Manipulatives - Act it out	- Pictures - Drawings - Diagrams - Numberlines - Tally marks	- Words - Symbols
		$\begin{gathered} 2+3 \\ a+b \\ 5^{2} \end{gathered}$ one half

Concrete - Representational - Abstract Explicitly link CRA!

Dividing Fractions

$5^{\text {th }}$ grade:
$5^{\text {th }}$ grade:
$6^{\text {th }}$ grade:

$$
4 \div \frac{1}{2} \quad \frac{1}{2} \div \frac{1}{4}
$$

Dividing Fractions

"Division by fractions, the most complicated operation with the most complex numbers, can be considered as a topic at the summit of arithmetic."

Liping Ma, 1999

$$
\text { Solve: } \quad 1 \frac{3}{4} \div \frac{1}{2}
$$

Represent $1 \frac{3}{4} \div \frac{1}{2}$

U.S. Teachers:
39% could solve
4% could represent

Chinese Teachers:
100% could solve 90% could represent

Modeling Division of Fractions

Review:

Dividing Whole Numbers- $6 \div 2=3$
If I have 6 items, how many groups of 2 can I make?

Dividing Fractions:

If I have $13 / 4$ items, how many groups of $1 / 2$ can I make?

$$
1 \frac{3}{4} \div \frac{1}{2}=3 \frac{1}{2}
$$

Fractions:
 Percentage of Problems Using Each Representation

Representation	CMP	Thematics	Glencoe
Concrete: Manipulatives	2.86%	5.12%	0.25%
Representational: Pictures	27.31%	7.28%	7.36%
Abstract: Written language	31.94%	7.28%	6.38%
Abstract: Symbols	58.15%	88.95%	95.71%
Fraction Representation: The Not-So-Common Denominator among Textbooks Mathematics Teaching in the Middle School 14(2), 78-84. NCTM (2008)			

Effective Visuals: Ten Frames

Ten Frames

dot card and ten frame package2005.pdf

Concrete \rightarrow Visual \rightarrow Abstract Representation: Number lines

www.howbrite.com

$3 \times 246=738$

The Low Stress or Partial Products Algorithms:
Representing Multiplication with Arrays and Area Models

The representation should match the abstract process.

$$
3 \times 200 \quad 3 \times 403 \times 6
$$

Expanded
246
Standard

$$
\begin{aligned}
& 120 \\
& 600 \\
& 738
\end{aligned}
$$

$$
3 \times 246=738
$$

Modeling Multiplication The Standard Algorithm

	tens $\times 3$
	$\square \square \square \square$
	$\square \square \square \square$
	$\square \square \square \square$

Multiply ones.

Regroup and Record.
Multiply tens.
Add regrouped tens.
Record.

Modeling Multiplication The Standard Algorithm

Multiply ones.

Regroup and Record.
Multiply tens.
Add regrouped tens.
Record.

Modeling Multiplication The Standard Algorithm

Multiply ones.
Regroup and Record.
Multiply tens.
Add regrouped tens.
Record.

Modeling Multiplication The Standard Algorithm

Multiply ones.

Regroup and Record.
Multiply tens.
Add regrouped tens.
Record.

Modeling Multiplication The Standard Algorithm

Multiply ones.
Regroup and Record.
Multiply tens.
Add regrouped tens.
Record.

Effective Visuals: Digi-blocks

- http://www.digi-block.com/

Research Findings

Concrete: 3 lessons

Representational: 3 lessons

Abstract

Hudson, Peterson, Mercer \& McLeod, 1988; Peterson, Mercer \& O'Shea, 1988; Butler, Miller, Crehan, Babbitt \& Pierce, 2003; Harris, Miller \& Mercer, 1995; Mercer \& Miller, 1992; Miller, Harris, Strawser, Jones \& Mercer, 1998; MMiller, Mercer \& Dillon, 1992

Concrete - Representational - Abstract 3 concrete $\rightarrow 3$ pictorial \rightarrow abstract

$$
3 \times 2=6
$$

Potential Roadblock

- Commercial materials
- Often fail to provide any
 concrete or visual representation
- Move too quickly to abstract words and symbols
- Do not provide a clear link from concrete to representational to abstract presentations

7. WWC
 Recommendation: Problem Solving

- Interventions should include instruction on solving word problems that is based on common underlying structures.
- What Works Clearinghouse 2009

Schema-based Instruction

Addition \& Subtraction 3 Basic Structures:

- Group (Part-Whole)
- Change
- Compare

Group Problem

Whole

Group Problem

I have 7 M\&Ms.
4 of them are pink. 3 of them are red.

7 M\&Ms

Group Problem

Whole

Part + Part = Whole Whole - Part = Part

Representing Group Problems

Singapore Math

Jitendra

Everyday Math

'Change' Problems

'Compare' Problems

Potential Roadblock

Commercial materials seldom organize problems by underlying structures.

Resources

minemino Dastionse

1. Solving Math Word Problems:

http://www.proedinc.com/custom er/productView.aspx?ID=4145

2. Go Solve Computer Program

http://www.tomsnyder.com/produ cts/product.asp?SKU=GOSGOS

Resources

Step-by Step Model Drawing Char Forsten (Singapore Math)

Math Problems
http://www.mathplayground.com/wordproble ms.html

Resources

5. Pirate Math

Fuchs - Vanderbilt University

www.kc.vanderbilt.edu/pals

8. WWC Recommendation:

Students

 requiring math interventions learn best with explicit instruction.
Characteristics of Learners Requiring Math Interventions

Frequently have deficits in:

- Language
- Memory
- Executive Functioning
- Motivation \& Attention

Allsop et al., 2010; Geary, 2004; Hallahan et al., 2005; Mabbott \& Bisanz, 2008; Morzzacco, 2007; Swanson, Jerman \& Zheng, 2009

How does explicit instruction differ from the inquiry model?

Example:

Counting Coins

1. Review Prerequisite Skills

- Identify coins and coin values
- Count by 1's, 5's, 10's
- Count on

2. Model Explicit Strategies

Counting Coins

1. Group like coins.
2. Order from largest value to smallest value.
Total the largest coins.
Move to the next largest coins. Count on (by skip counting) to find the new total.
Repeat step 3 until you have counted all the coins.

3. Guided Practice

- Students demonstrate understanding before working independently.
- Teachers provide scaffolded support and feedback, monitor understanding, and gradually fade support.

4. Independent Practice

Only when students can practice successfully!

Successful practice = 90-100\% accuracy

Summary

1. Universal Screening \rightarrow

Tiered, Targeted Interventions
2. Monitor Progress \& Adjust Interventions
3. Include Motivational Support
4. Focus on Foundational Skills
(whole numbers \& rational numbers)
5. Develop Fluency with Basic Facts
6. Use Visual Representations
7. Use Underlying Structures for Problem Solving
8. Use Explicit Instruction During Interventions

Thank you!

Click to LOOK INSIDE!

