

-

What is a perfect shuffle? Define it in your own words.

Explomin Prrreet suderiss:

4
There are 4 cards in a deck. A, 2, 3, and 4. Draw each iteration of a perfect shuffle until the deck returns to its original state. Use your cards to help you:

H
Test different size decks and make observations! Use your cards to perform the perfect shuffles.
a) Make a deck of 3 cards (A, 2, 3). Perform perfect shuffles until the deck returns to its original state.
b) Make a deck of 4 cards (A, 2, 3, 4). Perform perfect shuffles until the deck returns to its original state.
c) Continue making larger and larger decks. Fill in the table below.

CATr

What is a perfect shuffle? Define it in your own words.

4.

There are 6 cards in a deck. $A, 2,3,4,5,6$. Draw each iteration of a perfect shuffle until the deck returns to its original state. (**You might not need to use every row):

$\because:$

Test different size decks and make observations! Use your cards to perform the perfect shuffles.
a) Make a deck of 7 cards ($A, 2,3,4,5,6,7$). Perform perfect shuffles until the deck returns to its original state.
b) Make a deck of 8 cards (A, 2, 3, 4, 5, 6, 7, 8). Perform perfect shuffles until the deck returns to its original state.
c) Continue making larger and larger decks. Fill in the table below.

\# of cards in deck	\# perfect shuffles needed to restore deck to original state
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	

- 4: Make a deck of 10 cards using A - 10. Fill in the table below to chart the path of the 2 card. Stop when the 2 card returns to its original position. You might not need to use every row.

Number of Perfect Shufiles	Starting position	Position after the deck is cut	End position after perfect shuffle	
0	2 of 10	2 of 5 (in left hand)	Notes/observations	
1	3 of 10			
2		3 of 5 (in left hand)		

$\because:$ When the 2 card returns to its original position, what do you notice about the rest of the deck?

Will this always be the case? Why or why not?

What do you want to do next??
a. Option J: Make a deck of 10 cards ($\mathrm{A}-10$). Make a table to chart the path of a different card.
b. Option Q : Make a deck of 12 cards $(\mathrm{A}-\mathrm{Q})$. Make a table to chart the path of the 2 card.

10 cards your 2 card is in position 5 out of 10 . Explain how to figure out where it will go next.

榢

In a deck of 10 cards your 2 card is in position 9 out of 10. Explain how to figure out where it will go next.
\%
How do you know when your deck is about to return to its original state?

What is a perfect shuffle? Define it in your own words.

Complete the drawing of the next perfect shuffle for a deck of 6 cards:

Make a deck of 10 cards using A - 10. Fill in the table below to chart the path of the 2 card. Stop when the 2 card returns to its original position. You might not need to use every row.

Number of Perfect Shuffles	Starting position	Position after the deck is cut	End position after perfect shuffie	Notes/observations
0	2 of 10	$\begin{gathered} 2 \text { of } 5 \\ \text { (in left hand) } \end{gathered}$	3 of 10	
1	3 of 10	$\begin{gathered} 3 \text { of } 5 \\ \text { (in left hand) } \end{gathered}$		
2				

.

4 When the 2 card returns to its original position, what do you notice about the rest of the deck?

Will this always be the case? Why or why not?

$\because:$

What do you want to do next?
a. Option J: Make a deck of 10 cards ($\mathrm{A}-10$). Make a table to chart the path of a different card.
b. Option Q: Make a deck of 12 cards ($\mathrm{A}-\mathrm{Q}$). Make a table to chart the path of the 2 card.
c. Option K: Using a deck of 52 cards. Make a table to chart the path of the 2 card. (If you can do this without using physical cards, you are welcome to do so!)

In a deck of 52 cards your 2 card is in position 9 out of 52. Explain how to figure out where it will go next.

8

4. In a deck of 52 cards your 2 card is in position 33 out of 52. Explain how to figure out where it will go next.

T

:\% For any size deck, how do you know when the deck is about to return to its original state?

0
: Is there a deck that cannot return to its original state after infinite perfect shuffles? If yes, give an example.

