

The Main Objectives

- Use data from the flight of an angry bird to an object is dropped from a height of 90 meters. develop models for the motion
-Explore the major variables of angle and
Compute height for a specific time and time for specific height
Compute the time when the object strikes the ground

Example 2

Write a model for height as a function of time when
Write a model for height as a function of time when
an object is thrown upwards with an initial velocity of $40 \mathrm{~m} / \mathrm{s}$ from an height of 10 meters.

What if the initial velocity is not in the vertical or horizontal direction, but at an angle, θ ?

$\mathrm{v} \cdot \sin \theta$

Create a Model by Regression


```
More About These Coefficients Later
```



```
QuadReg
    a =-0.0145123
    b =2.39544602
    c =5.98181537
    r2}=0.99938941
    MSe=1.1348274
y=ax}\mp@subsup{x}{}{2}+bx+
        COPY DRAW
```


Let's Explore the Angle and Initial Velocity
$v_{0} \sin (t)=45.115$
$v_{0} \cos (t)=18.866$
-There are several ways to compute the values

CASIO

$$
-4.9
$$

$$
\begin{gathered}
\text { Explorations } \\
\text { Use the graphs of }(t, x),(t, y) \text {, and }(x, y) \text { to compute the results: }
\end{gathered}
$$

$$
\text { Q1 What is the bird's position at time } t=2.5 \text { seconds? }
$$

Q2 How long is the bird in flight?
Q3 What is the time when the bird is at maximum height?
Q4 What is the maximum height?

$$
\mathrm{Q} 5 \mathrm{At} \text { what time(s) is the bird at height } 60 \text { meters? }
$$

Q6 How far did the bird fly horizontally?
Q7 What is the height when the horizontal position is 150 meters?
Q8 what is the horizontal position when the height is 60 meters? and angle that will hit the pig

One more extension

- Suppose several birds are fired at the same angle, say 60°, but at different velocities
$\{20,30,40,50,60\}$, and stop at time $\mathrm{t}=3.5$.
$x=(\{20,30,40,50,60\} \cos (60)) t$
$y=-4.9 t^{2}+(\{20,30,40,50,60\} \sin (60)) t$

Solution

Suppose several birds are fired at the same angle, say 60°, but at different velocities $\{20,30,40,50,60\}$, and stop at time $\mathrm{t}=3.5$.
The birds (points) are collinear with slope $\tan \left(60^{\circ}\right)$ and y-intercept $-4.9\left(3.5^{2}\right)$.

Your Challenge

- Suppose several birds are fired at the same velocity, say $40 \mathrm{~m} / \mathrm{s}$, but at different angles and stop at time $t=2.5$.

The birds (points) are not collinear, but there is a relation.

- Here's a hint

